			D1
Appello del 6.6.	2023: Compito A		D2
Nome:	Cognome:	Matricola:	E1
			E2
Domanda 1		[3+2 punti]	E3
(i) Enunciare il	test di monotonia per le funzio	oni derivabili.	E4
(ii) Trovare gli in	(ii) Trovare gli insiemi di monotonia dellla funzione $f(x) = 2x^3 + 3x^2 - 12x + 1$.		E5
			E6
Risposta			\sum
(i)			
Domanda 2			[2+3 punti]
(i) Enunciare il	criterio del rapporto per le ser	rie numeriche.	
(ii) Studiare con	il criterio del rapporto la serio	$\geq \sum_{n=0}^{\infty} \frac{4^n}{n!}.$	
Risoluzione			
(i)			
(ii)			

La successione $a_n = \frac{4^n - e^{n \ln(n)}}{\pi^n - n!}$ é	
a infinitesima	b oscillante
$\boxed{\mathbf{c}}$ asintotica a $-\frac{1}{n^2}$	d divergente
Risoluzione (giustificare la risposta)	
Esercizio 2	[3 punti]
La funzione $f(x) = x^2 e^{-x}$	
$\boxed{\mathbf{a}}$ soddisfa le ipotesi del Teorema di Rolle in $[-1,1]$	b é invertibile
c é pari	d ammette minimo assoluto
Risoluzione (giustificare la risposta)	
Esercizio 3	[3 punti]
Se $\lim_{n\to+\infty} (a_n)^3 = +\infty$, allora la serie $\sum_{n=0}^{\infty} a_n$	
a converge	$\boxed{\mathrm{b}}$ diverge a $+\infty$
c é oscillante	$\boxed{\mathbf{d}}$ diverge a $-\infty$
Risoluzione (giustificare la risposta)	

[3 punti]

Esercizio 1

Esercizio 4	[4 punti]
Calcolare $\int_0^1 \frac{1}{1+e^{\epsilon}}$	$\frac{1}{c} dx$.
Risoluzione	
Esercizio 5	[4 punti]
Calcolare $\lim_{x\to 0} \frac{e^{x^2+x}-e^x}{1-\cos(x)}$	
Risoluzione	

Esercizio 6	[5 punti]
	L ±

Risolvere al	variare	$_{ m di}$	$\alpha \in$	\mathbb{R}	ľ	equazione	differenzia	$_{ m ile}$
--------------	---------	------------	--------------	--------------	---	-----------	-------------	-------------

ſ	y'(t) +	$y^2(t)e^{-t}$ α .	=0
	y(1) =	α .	

Risoluzione	