			D1
Appello del 19.1.2021: Compito A			D2
Nome:	Cognome:	Matricola:	E1
			E2
Domanda 1		[3+2 punti]	E3
(i) Dare la definizione di $\lim_{n\to+\infty} a_n = \ell$.			E4
(ii) Fare un esempio di successione limitata, ma non convergente.		E5	
			E6
Risposta			$\sum_{i=1}^{n}$
(i)			
(;;)			·
(11)			
Domanda 2	2		[3+2 punti]
	il <i>Teorema di Fermat</i> (per la carat	tarizzaziona dagli estremi loca	
, ,	empio di una funzione tale che un		
,	emplo di dila idizione tale che di	suo punto critico non sia punt	o di estremo locare.
Risoluzione			
(i)			
(ii)			

Esercizio 1 [3 punti]

Sia $\sum_{n=0}^{\infty}a_n$ una serie convergente a termini positivi. Allora

$$\boxed{\mathbf{a}} \lim_{n \to \infty} \sqrt[n]{a_n} < 1;$$

$$b$$
 $\{a_n\}_{n\in\mathbb{N}}$ é monotona

d
$$\{\sin(a_n)\}_{n\in\mathbb{N}}$$
 é convergente

Risoluzione (giustificare la risposta)

Esercizio 2 [3 punti]

La funzione $f(x) = x^8 \sin(x), x \in \mathbb{R}$ é tale che

$$\boxed{\text{c}} \int_{-3}^{3} f(x)dx = 0$$

d ha limite
$$-\infty$$
 per $x \to -\infty$

Risoluzione (giustificare la risposta)

Esercizio 3 [3 punti]

Siano $f: \mathbb{R} \to \mathbb{R}$ regolare tale che $\lim_{x\to 0} \frac{f(x)}{\sin(x^2)} = 1$. Allora il polinomio di Taylor di ordine 2 di f in $x_0 = 0$ é

a
$$T_2(x) = 1$$
;

b
$$T_2(x) = 1 + x^2;$$

$$\boxed{\mathbf{c}} T_2(x) = x^2;$$

d
$$T_2(x) = \ln(1+x^2)$$
.

Risoluzione (giustificare la risposta)

Calcolare, se esiste,	$a^x = \sin(x) = \cos(x)$	
	$\lim_{x \to 0} \frac{e^x - \sin(x) - \cos(x)}{e^{x^2} - e^{x^3}}$	
Risoluzione		
		_
Esercizio 5		[4 punti]
Studiare al variare di $\alpha \in \mathbb{R}$ il	problema di Cauchy	
brudiare ar variare di $\alpha \in \mathbb{R}$ ir		
	$\begin{cases} (t^2 + 1)y'(t) = e^{-y(t)} \\ y(0) = \alpha \end{cases}$	
	$y(0) = \alpha$	
Risoluzione		
Risoluzione		
		_

[4 punti]

Esercizio 4

Esercizio 6	[5 punti]
Studiare la funzione $f(x) = (x^2 + 1)e^{- x }$ e tracciarne un grafico qualitativo.	
Risoluzione	