1 - Determinare i valori dei parametri reali α e β tali che $\operatorname{sen}(\alpha x) + \cos(\beta x) - 1 - 3x = -2x^2 + o(x^2)$ per $x \to 0$.

.....

Per gli sviluppi di Maclaurin di sen x e $\cos x$ si ha

$$sen(\alpha x) = \alpha x + o(x^2)$$
 per $x \to 0$

$$\cos(\beta x) = 1 - \frac{\beta^2}{2}x^2 + o(x^2)$$
 per $x \to 0$,

e quindi

$$sen(\alpha x) + cos(\beta x) - 1 - 3x = (\alpha - 3)x - \frac{\beta^2}{2}x^2 + o(x^2)$$
 per $x \to 0$.

Pertanto la condizione assegnata è verificata se $\alpha-3=0$ e $-\frac{\beta^2}{2}=-2$, cioè $\alpha=3$ e $\beta=\pm 2$.

2 - Calcolare l'integrale $\int_0^1 x(1-x^2)^6 dx.$

....

$$\int_0^1 x (1-x^2)^6 \ dx = -\frac{1}{2} \int_0^1 (-2x) (1-x^2)^6 \ dx = -\frac{1}{14} \left[(1-x^2)^7 \right]_0^1 = \frac{1}{14} \ .$$

 ${\bf 3}$ - Determinare la soluzione del problema di Cauchy $\begin{cases} y''-y'+y=e^x\\ y(0)=1,\quad y'(0)=1\,. \end{cases}$

(9(0) 1, 9(0) 1.

L'equazione caratteristica dell'equazione omogenea associata è

$$\lambda^2 - \lambda + 1 = 0$$
, $\lambda_{1/2} = \frac{1 \pm i\sqrt{3}}{2}$.

Utilizzando il metodo ad hoc, l'integrale generale dell'equazione assegnata è dato da

$$y(x) = e^{\frac{x}{2}} \left(C_1 \cos\left(\frac{\sqrt{3}}{2}x\right) + C_2 \sin\left(\frac{\sqrt{3}}{2}x\right) \right) + Ce^x, \qquad C_1, C_2 \in \mathbb{R},$$

dove $C \in \mathbb{R}$ si deve determinare in modo che la funzione $\widetilde{y}(x) = Ce^x$ risulti una soluzione di $y'' - y' + y = e^x$. Infatti, poiché

$$\widetilde{y}'(x) = \widetilde{y}''(x) = Ce^x$$
,

imponendo che $\widetilde{y}(x) = Ce^x$ sia soluzione di $y'' - y' + y = e^x$, si ottiene che C = 1. Pertanto, l'integrale generale dell'equazione assegnata è dato da

$$y(x) = e^{\frac{x}{2}} \left(C_1 \cos\left(\frac{\sqrt{3}}{2}x\right) + C_2 \sin\left(\frac{\sqrt{3}}{2}x\right) \right) + e^x, \qquad C_1, C_2 \in \mathbb{R}.$$

Imponendo le condizioni iniziali y(0) = y'(0) = 1 si ricavano i valori delle costanti arbitrarie, precisamente $C_1 = C_2 = 0$; di conseguenza la soluzione del problema di Cauchy è

$$y(x) = e^x$$
.

Si può giungere alla stessa conclusione in un altro modo. Infatti, dall'espressione dell'equazione differenziale assegnata risulta evidente che la funzione $y(x) = e^x$ è soluzione di $y'' - y' + y = e^x$; inoltre, verifica anche le condizioni iniziali y(0) = y'(0) = 1, e di conseguenza, grazie all'unicità della soluzione del problema di Cauchy, $y(x) = e^x$ è proprio la soluzione richiesta.

4 - Stabilire il comportamento della serie $\sum_{n=0}^{\infty} \log(1+2^{-n}).$

.....

La serie assegnata è a termini positivi.

Per lo sviluppo di Maclaurin di log(1+x) si ha

$$\log(1+2^{-n}) = 2^{-n} + o(2^{-n})$$
 per $n \to \infty$.

Per il criterio del confronto asintotico la serie assegnata ha lo stesso carattere della serie geometrica $\sum_{n=1}^{\infty} \frac{1}{2^n}$ che converge perchè $\frac{1}{2}$ < 1. In conclusione, la serie assegnata è convergente.

 $f(x) = \frac{\sqrt[3]{x}}{x+1}$ determinare l'insieme di definizione, i limiti agli estremi del dominio, eventuali ${\bf 5}$ - Data la funzione asintoti, eventuali punti di non derivabilità, gli intervalli di monotonia ed eventuali punti di minimo e di massimo. Tracciare un grafico qualitativo della funzione. (Non è richiesto lo studio della convessità).

La funzione è definita per ogni $x \neq -1$.

Per quanto riguarda i limiti agli estremi del dominio si ha

$$\lim_{x\to -\infty} f(x)=0\,,\quad \lim_{x\to -1^-} f(x)=+\infty\,,\quad \lim_{x\to -1^+} f(x)=-\infty\,,\quad \lim_{x\to +\infty} f(x)=0\,,$$

e di conseguenza x=-1 è asintoto verticale e y=0 è asintoto orizzontale per f. La derivata di f è data da

$$f'(x) = \frac{\frac{1}{3}x^{-2/3}(x+1) - \sqrt[3]{x}}{(x+1)^2} = \frac{1 - 2x}{3x^{2/3}(x+1)^2} \qquad x \neq -1, 0.$$

Si osservi che

$$\lim_{x \to 0} f'(x) = +\infty,$$

e di conseguenza f non è derivabile in 0.

Dallo studio del segno di f' segue che f è crescente in $(-\infty, -1)$ e in (-1, 1/2), mentre è decrescente in $(1/2, +\infty)$.

Pertanto, $f(1/2) = \frac{2}{3\sqrt[3]{2}} = \frac{\sqrt[3]{4}}{3}$ è un massimo relativo per f. Un grafico approssimativo di f è il seguente.

