Topologia della retta reale. Concetto intuitivo di limite.

Definizioni di limite.

Teoremi sui limiti. Applicazioni.

TOPOLOGIA DELLA RETTA REALE

Esiste una corrispondenza biunivoca tra l'insieme R dei numeri reali e i punti de una retta orientata r, detta retta reale. Possiamo cioè identificare ogni sottoinsieme di R con un sottoinsieme di punti della retta.

Un intervallo è un sottoinsieme di punti che corrisponde ad una semiretta (intervallo illimitato) o ad un segmento (intervallo limitato) della retta.

$$[a,+\infty[= \{x \in R \mid x \ge a\}$$

$$[a,b] = \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[= \{x \in R \mid a \le x \le b\}]$$

$$[a,b[=$$

b - a = ampiezza dell'intervallo

$$\frac{b-a}{2}$$
 = raggio dell'intervallo
$$\frac{b+a}{2}$$
 = centro dell'intervallo

INSIEMI LIMITATI E ILLIMITATI

Un insieme A è <u>limitato superiormente</u> $\Leftrightarrow \exists M \in R : \forall x \in A, x \leq M$ Il numero M è detto un <u>maggiorante</u> dell'insieme A

Un insieme A è <u>limitato inferiormente</u> $\Leftrightarrow \exists m \in R : \forall x \in A, x \geq m$ Il numero m è detto un <u>minorante</u> dell'insieme A

Un insieme si dice limitato se è limitato sia inferiormente che superiormente, ossia se esiste un intervallo limitato che lo contiene.

$$A = \left\{ x \mid x = \frac{2n}{n+1}, n \in \mathbb{N} \right\}$$

$$A = \left\{0,1,\frac{4}{3},\frac{3}{2},\frac{8}{5},\frac{5}{3},\ldots\right\} \text{ tutti gli elementi sono maggiori di 0 e minori di 2,}$$

pertanto l'insieme è limitato. 0 è un minorante e 2 è un maggiorante dell'insieme.

Un insieme A si dice <u>illimitato superiormente</u> $\Leftrightarrow \forall M \in R, \exists x \in A, x > M$ Un insieme si dice <u>illimitato inferiormente</u> $\Leftrightarrow \forall m \in R, \exists x \in A, x < m$

Un insieme si dice <u>illimitato</u> se è illimitato sia superiormente che inferiormente

Una funzione si dice illimitata/limitata se lo è il suo codominio.

ESTREMI DI UN INSIEME

<u>DEF.</u> Dato un insieme A superiormente limitato, si dice <u>estremo</u> <u>superiore</u> di A, quel numero reale M, se esiste, tale che:

- 1) $x \le M, \forall x \in A$
- 2) $\forall \varepsilon > 0, \exists x \in A : x > M \varepsilon$

M= sup (A) è un maggiorante di A ed è il più piccolo dei maggioranti Se $sup(A) \in A \Rightarrow sup(A) = max(A)$

<u>DEF.</u> Dato un insieme A inferiormente limitato, si dice <u>estremo inferiore</u> di A, quel numero reale m, se esiste, tale che:

- 1) $x \ge m, \forall x \in A$
- 2) $\forall \varepsilon > 0, \exists x \in A : x < m + \varepsilon$

m= inf (A) è un minorante di A ed è il più grande dei minoranti Se $inf(A) \in A \Rightarrow inf(A) = min(A)$ OSS. L'estremo superiore(inferiore) o il massimo(minimo) di una funzione sono l'estremo superiore(inferiore) o il massimo(minimo) del suo codominio.

PROPRIETA': Se l'insieme A è totalmente ordinato, allora l'estremo superiore e l'estremo inferiore, se esistono, sono unici.

INTORNO DI UN PUNTO

Def. Dato un numero reale x_0 , si chiama <u>intorno completo</u> di x_0 un qualunque intervallo aperto I contenente x_0 .

$$I =]x_0 - \delta_1, x_0 + \delta_2[\quad \text{con } \delta_1, \delta_2 \in R$$

Nel caso in cui $\delta_1=\delta_2=\delta$ allora si parla di <u>intorno</u> circolare di centro x_0 e raggio $\delta_1=\delta_2=\delta$

$$x \in \left] x_0 - \delta, x_0 + \delta \right[\iff x_0 - \delta < x < x_0 + \delta \iff -\delta < x - x_0 < \delta \iff |x - x_0| < \delta$$

Oss. L'intersezione e l'unione di due o più intorni di x_0 è ancora un intorno di x_0 .

INTORNO DESTRO E INTORNO SINISTRO

$$I^{+}(x_{0}) =]x_{0}, x_{0} + \delta[\text{ intorno destro di } x_{0}]$$

$$I^{-}(x_{0}) =]x_{0} - \delta, x_{0}[\text{ intorno sinistro di } x_{0}]$$

INTORNI DI INFINITO

Intorno di meno infinito: un qualunque intervallo aperto illimitato inferiormente: $I(-\infty) =]-\infty; a[=\{x \in R \mid x < a\}$

Intorno di più infinito: un qualunque intervallo aperto illimitato superiormente: $I(+\infty) = a; +\infty = \{x \in R \mid x > a\}$

PUNTO DI ACCUMULAZIONE E PUNTO ISOLATO

Il punto x_0 è detto <u>punto di accumulazione</u> per l'insieme A, se ogni intorno completo di x_0 contiene infiniti punti di A.

 x_0 è di accumulazione per $A \Leftrightarrow \forall I \in \Im(x_0), I \cap A \setminus \{x_0\} \neq \emptyset$

Esempio.
$$A = \left\{ x \mid x = \frac{1}{n}, n \in N \right\}$$

Per questo insieme l'unico punto di accumulazione è $x_0 = 0$, anche se lo zero non appartiene all'insieme stesso.

Tutti gli altri punti dell'insieme A vengono invece detti punti isolati.

Def. Insieme Derivato

l'insieme dei punti di accumulazione di un insieme A è detto **insieme** derivato di A e viene indicato con A'

<u>Def.</u> Un punto x_0 è detto <u>punto isolato</u> per l'insieme A se esiste almeno un intorno di x_0 che non contiene elementi di A diversi da x_0 .

$$x_0$$
 è punto isolato per $A \Leftrightarrow \exists I \in \Im(x_0), I \cap A \setminus \{x_0\} = \emptyset \Leftrightarrow \Leftrightarrow \exists I \in \Im(x_0), I \cap A = \{x_0\}$

Def. Punto Interno

Un punto a si dice interno per l'insieme A se esiste un intorno sferico (circolare) di a tutto contenuto in A

Def. Insieme Aperto

Un insieme si dice aperto se tutti i suoi punti sono punti interni

Def. Insieme Chiuso

Un insieme si dice chiuso se il suo complementare è un insieme aperto

Def. Punto Esterno

Un punto x_0 si dice esterno per l'insieme A se esiste un intorno sferico di x_0 tutto contenuto nel complementare di A (x_0 è un punto interno del complementare di A)

Def. Punto di Frontiera

Un punto a si dice di frontiera per l'insieme A se ogni intorno sferico di a ha intersezione non nulla sia con A che con il complementare di A Nota: è un punto che non è né esterno né interno

Def. Frontiera

La frontiera di un insieme A è l'insieme costituito da tutti i punti di frontiera di A. Si indica con ∂A .

Nota. ∂A unita con A è il più piccolo insieme chiuso che contiene A e prende il nome di **chiusura di A**.

Approccio intuitivo al concetto di limite

 $\lim_{x\to x_0} f(x) = \ell \quad \text{Man mano che x tende al punto } x_0, \text{ la funzione tende al }$

valore
$$\ell$$
.
$$\lim_{x \to 1} x^2 + 2 = 3$$

X	f(x)	3-f(x)	X	f(x)	f(x)-3
0,967778	2,936594	0,063406	1,023455	3,04746	0,04746
0,976555	2,95366	0,04634	1,006789	3,013624	0,013624
0,985666	2,971537	0,028463	1,000568	3,001136	0,001136
0,986777	2,973729	0,026271	1,000057	3,000114	0,000114
0,994567	2,989163	0,010837	1,000022	3,000044	4,42E-05
0,99999	2,99998	2E-05	1,000001	3,000002	2E-06

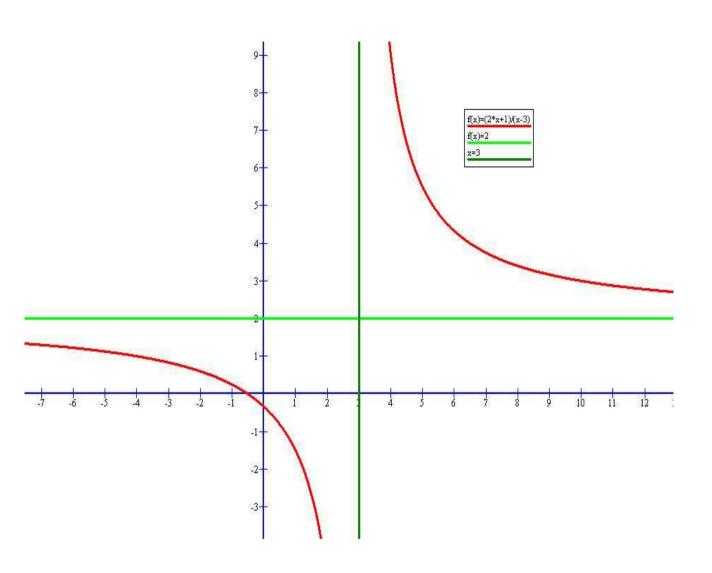
$$y = \frac{2x+1}{x-3} = 2 + \frac{7}{x-3}$$

$$\lim_{x \to 3^{+}} \frac{2x+1}{x-3} = +\infty$$

$$\lim_{x \to 3^{-}} \frac{2x+1}{x-3} = -\infty$$

$$\lim_{x \to +\infty} \frac{2x+1}{x-3} = 2$$

$$\lim_{x \to -\infty} \frac{2x+1}{x-3} = 2$$



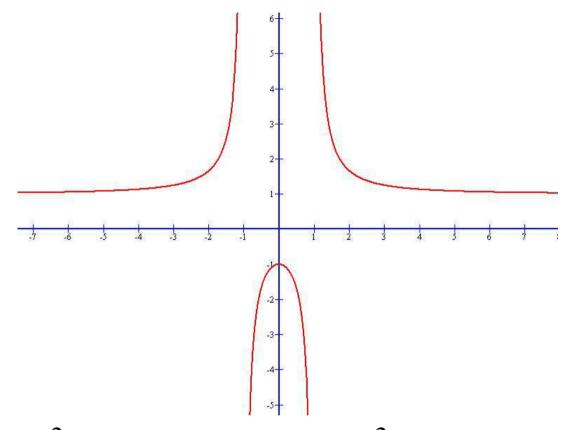
$$y = \frac{x^2 + 1}{x^2 - 1} = 1 + \frac{2}{x^2 - 1}$$

$$\lim_{x \to -\infty} \frac{x^2 + 1}{x^2 - 1} = 1$$

$$\lim_{x \to -1^{-}} \frac{x^2 + 1}{x^2 - 1} = +\infty$$

$$\lim_{x \to -1^{+}} \frac{x^{2} + 1}{x^{2} - 1} = -\infty$$

$$\lim_{x \to +\infty} \frac{x^2 + 1}{x^2 - 1} = 1$$



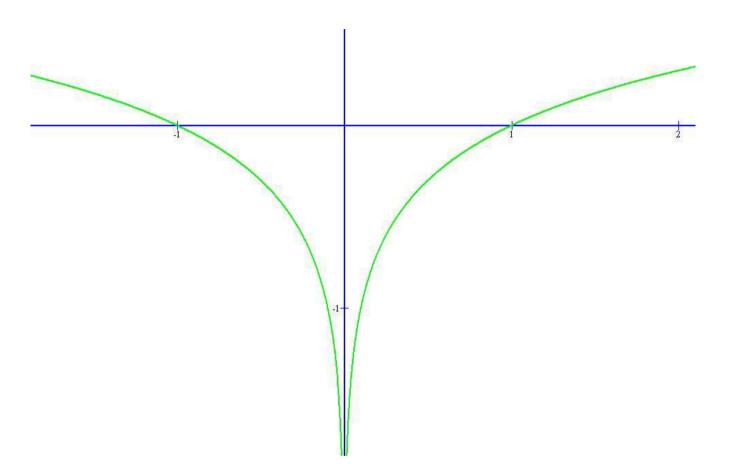
$$\lim_{x \to 1^{-}} \frac{x^{2} + 1}{x^{2} - 1} = -\infty \qquad \qquad \lim_{x \to 1^{+}} \frac{x^{2} + 1}{x^{2} - 1} = +\infty$$

$$\lim_{x \to 1^{+}} \frac{x^{2} + 1}{x^{2} - 1} = +\infty$$

$$y = log(|x|)$$

$$\lim_{x \to \pm \infty} \log(|x|) = +\infty$$

$$\lim_{x \to 0^{\pm}} \log(|x|) = -\infty$$



Definizione di limite finito in un punto (x_0 finito, ℓ finito)

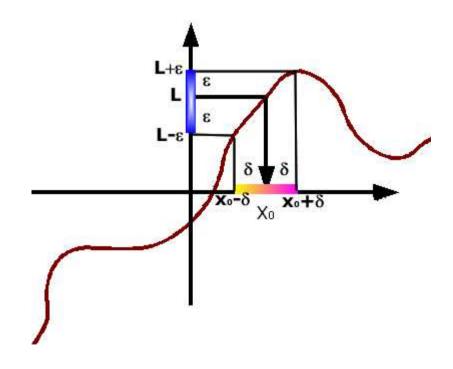
$$\lim_{x \to x_0} f(x) = \ell \Leftrightarrow \forall I \in \Im(\ell), \exists I \in \Im(x_0) : \forall x \in I \cap D \setminus \{x_0\} \Rightarrow f(x) \in I'$$

$$\Leftrightarrow \forall \epsilon > 0, \exists \delta_{\epsilon} > 0 : \forall x, |x - x_0| < \delta_{\epsilon} \Rightarrow |f(x) - \ell| < \epsilon$$

$$|f(x) - \ell| < \epsilon \Leftrightarrow -\epsilon < f(x) - \ell < \epsilon$$

$$\Leftrightarrow \ell - \epsilon < f(x) < \ell + \epsilon$$

Cioè f(x) cade in un intorno circolare di ℓ

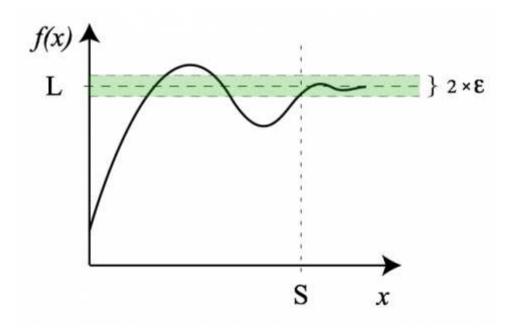


Definizione di limite finito all'infinito ($x_0 = +\infty$, ℓ finito)

$$\lim_{x \to +\infty} f(x) = \ell \Leftrightarrow \forall I \in \Im(\ell), \exists I \in \Im(+\infty) : \forall x \in I \cap D \Rightarrow f(x) \in I'$$

$$\Leftrightarrow \forall \varepsilon > 0, \exists N > 0 : \forall x : x > N \Rightarrow |f(x) - \ell| < \varepsilon$$

 $y = \ell$ è detto ASINTOTO ORIZZONTALE



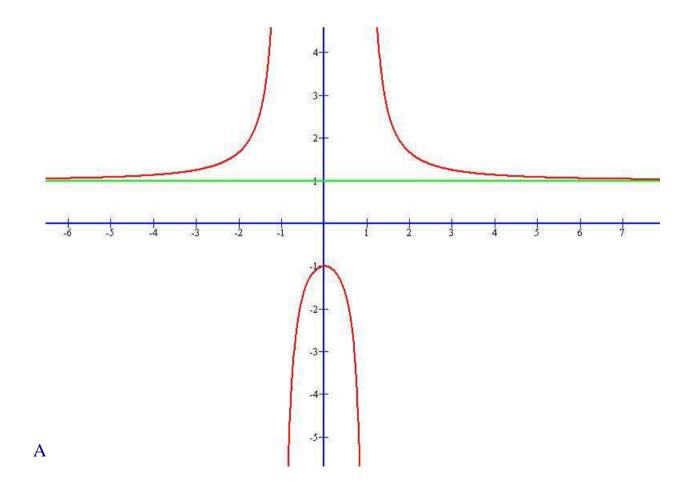
Definizione di limite finito all'infinito ($x_0 = -\infty$, ℓ finito)

$$\lim_{x \to -\infty} f(x) = \ell \Leftrightarrow \forall I \in \Im(\ell), \exists I \in \Im(-\infty) : \forall x \in I \cap D \Rightarrow f(x) \in I'$$
$$\Leftrightarrow \forall \epsilon > 0, \exists N > 0 : \forall x : x < -N \Rightarrow |f(x) - \ell| < \epsilon$$

 $y = \ell$ è detto ASINTOTO

ORIZZONTALE

$$y = \frac{x^2 + 1}{x^2 - 1} = 1 + \frac{2}{x^2 - 1}$$

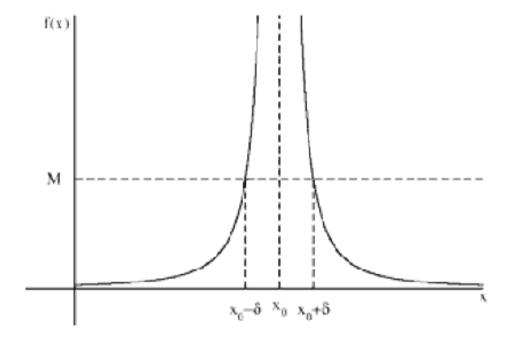


Limite infinito in un punto (x_0 finito, $\ell = +\infty$)

$$\lim_{x \to x_0} f(x) = +\infty \Leftrightarrow \forall I \in \mathfrak{I}(+\infty), \exists I \in \mathfrak{I}(x_0) : \forall x \in I \cap D \setminus \{x_0\} \Rightarrow f(x) \in I'$$

$$\Leftrightarrow \forall M > 0, \exists \delta_{\varepsilon} > 0 : \forall x, |x - x_0| < \delta_{\varepsilon} \Rightarrow f(x) > M$$

 $x = x_0$ è ASINTOTO VERTICALE

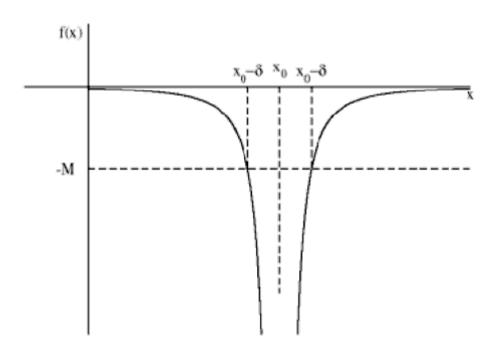


Limite infinito in un punto (x_0 finito, $\ell = -\infty$)

$$\lim_{x \to x_0} f(x) = -\infty \Leftrightarrow \forall I \in \mathfrak{I}(-\infty), \exists I \in \mathfrak{I}(x_0) : \forall x \in I \cap D \setminus \{x_0\} \Rightarrow f(x) \in I'$$

$$\Leftrightarrow \forall M > 0, \exists \delta_{\varepsilon} > 0 : \forall x, |x - x_0| < \delta_{\varepsilon} \Rightarrow f(x) < -M$$

$$x = x_0$$
 è ASINTOTO VERTICALE



Limite infinito all'infinito $(x_0 \pm \infty, \ell = \pm \infty)$

$$\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \forall I' \in \Im(+\infty), \exists I \in \Im(+\infty) : \forall x \in I \cap D \Rightarrow f(x) \in I'$$

$$\Leftrightarrow \forall M > 0, \exists N > 0 : \forall x, x > N \Rightarrow f(x) > M$$

$$\lim_{x \to +\infty} f(x) = -\infty \Leftrightarrow \forall I' \in \Im(-\infty), \exists I \in \Im(+\infty) : \forall x \in I \cap D \Rightarrow f(x) \in I'$$

$$\lim_{x \to +\infty} f(x) = -\infty \Leftrightarrow \forall 1 \in \Im(-\infty), \exists 1 \in \Im(+\infty) : \forall x \in 1 \cap D \Rightarrow f(x) \in 1$$

$$\Leftrightarrow \forall M > 0, \exists N > 0 : \forall x, x > N \Rightarrow f(x) < -M$$

$$\lim_{x \to -\infty} f(x) = +\infty \Leftrightarrow \forall I' \in \Im(+\infty), \exists I \in \Im(-\infty) : \forall x \in I \cap D \Rightarrow f(x) \in I'$$

$$\Leftrightarrow \forall M > 0, \exists N > 0 : \forall x, x < -N \Rightarrow f(x) > M$$

$$\lim_{x \to -\infty} f(x) = -\infty \Leftrightarrow \forall I' \in \Im(-\infty), \exists I \in \Im(-\infty) : \forall x \in I \cap D \Rightarrow f(x) \in I'$$

$$\Leftrightarrow \forall M > 0, \exists N > 0 : \forall x, x < -N \Rightarrow f(x) < -M$$

Limite destro e limite sinistro

$$\lim_{x \to x_0^-} f(x) = \ell \Leftrightarrow \forall I \in \mathfrak{I}(\ell), \exists I^- \in \mathfrak{I}^-(x_0) : \forall x \in I^- \cap D \Rightarrow f(x) \in I'$$

$$\Leftrightarrow \forall \epsilon > 0, \exists \delta_{\epsilon} > 0 : \forall x, x_0 - \delta_{\epsilon} < x < x_0 \Rightarrow |f(x) - \ell| < \epsilon$$

Va scelto un intorno sinistro del punto $I^{-}(x_0) =]x_0 - \delta, x_0[$

$$\lim_{x \to x_0^+} f(x) = \ell \Leftrightarrow \forall I \in \mathfrak{I}(\ell), \exists I^+ \in \mathfrak{I}^+(x_0) : \forall x \in I^+ \cap D \Rightarrow f(x) \in I'$$

$$\Leftrightarrow \forall \epsilon > 0, \exists \delta_{\epsilon} > 0 : \forall x, x_0 < x < x_0 + \delta_{\epsilon} \Rightarrow \mid f(x) - \ell \mid < \epsilon$$

Va scelto un intorno destro del punto $I^{+}(x_{0}) =]x_{0}, x_{0} + \delta[$

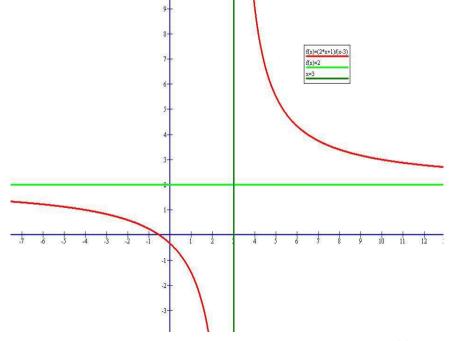
$$\lim_{x \to x_0^-} f(x) = -\infty \Leftrightarrow \forall I' \in \Im(-\infty), \exists I^- \in \Im^-(x_0) : \forall x \in I^- \cap D \Rightarrow f(x) \in I'$$

$$\Leftrightarrow \forall M > 0, \exists \delta_{\varepsilon} > 0 : \forall x, x_0 - \delta_{\varepsilon} < x < x_0 \Rightarrow f(x) < -M$$

$$\lim_{x \to x_0^+} f(x) = +\infty \Leftrightarrow \forall I' \in \Im(+\infty), \exists I^+ \in \Im^+(x_0) : \forall x \in I^+ \cap D \Rightarrow f(x) \in I'$$
$$\Leftrightarrow \forall M > 0, \exists \delta_{\varepsilon} > 0 : \forall x, x_0 < x < x_0 + \delta \varepsilon \Rightarrow f(x) > M$$

$$\lim_{x \to 3^{-}} \frac{2x+1}{x-3} = -\infty$$

$$\lim_{x \to 3^+} \frac{2x+1}{x-3} = +\infty$$

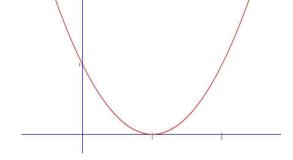


Limite per eccesso e per difetto

 $\lim_{x \to x_0} f(x) = \ell^+ \Leftrightarrow \forall I \in \mathfrak{I}^+(\ell), \exists I \in \mathfrak{I}(x_0) : \forall x \in I \cap D \setminus \{x_0\} \Rightarrow f(x) \in I'$

$$\Leftrightarrow \forall \epsilon > 0, \exists \delta_{\epsilon} > 0 : \forall x, |x - x_0| < \delta_{\epsilon} \Rightarrow \ell < f(x) < \ell + \epsilon$$

Esempio $y = (x-1)^2$

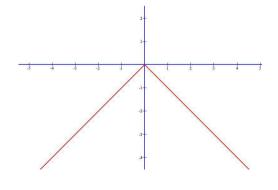


$$\lim_{x \to 1} (x - 1)^2 = 0^+$$

 $\lim_{x \to x_0} f(x) = \ell^- \Leftrightarrow \forall I \in \mathfrak{I}^-(\ell), \exists I \in \mathfrak{I}(x_0) : \forall x \in I \cap D \setminus \{x_0\} \Rightarrow f(x) \in I'$

$$\Leftrightarrow \forall \epsilon > 0, \exists \delta_{\epsilon} > 0 : \forall x, | x - x_0 | < \delta_{\epsilon} \Rightarrow \ell - \epsilon < f(x) < \ell$$

Esempio y = (-|x|)



$$\lim_{x \to 0} (-|x|) = 0^{-}$$

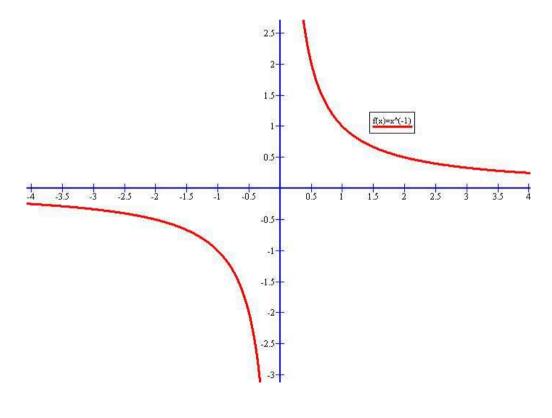
Esistenza del limite

$$\exists \lim_{x \to x_0} f(x) = \ell \Leftrightarrow \begin{cases} \exists \lim_{x \to x_0^+} f(x) = \ell \\ \exists \lim_{x \to x_0^-} f(x) = \ell \end{cases}$$

Non sempre il limite di una funzione esiste

 $\begin{array}{l} lim \frac{1}{-} \quad \text{non esiste!!!} \quad \text{Esistono il limite} \\ x \rightarrow 0 \ X \\ \text{destro e sinistro, ma sono diversi!!!!} \end{array}$

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty \qquad \lim_{x \to 0^-} \frac{1}{x} = -\infty$$



OSS. Non è necessario che la funzione sia definita nel punto a cui tende la x. La cosa importante è che questo valore sia un punto di accumulazione del dominio della funzione.

OSS. Se una funzione è pari ed x_0 =0 basta dimostrare l'esistenza del limite destro affinché esista il limite.

$$y = f(x)$$
 pari \Rightarrow $f(-x) = f(x)$
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(-x) = \lim_{x \to 0^{+}} f(x)$$

Esempio:
$$\lim_{x \to \pm \infty} \operatorname{sen}(x) = \operatorname{non esiste}$$
 $\lim_{x \to \pm \infty} \cos(x) = \operatorname{non esiste}$

In quanto $y = \sin x e y = \cos x \text{ sono funzioni oscillanti}$

TEOREMI SUI LIMITI

Teorema di unicità del limite (dim. svolta in aula)

Hp:
$$\exists \lim_{x \to x_0} f(x) = \ell$$

Th: ℓ è unico

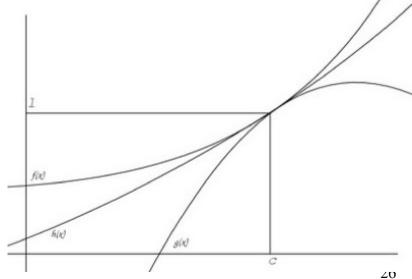
Teorema del confronto (dim. svolta in aula)

Hp: 1)
$$\exists \lim_{x \to x_0} g(x) = \ell$$

$$\exists \lim_{x \to x_0} h(x) = \ell$$

3)
$$\exists I \in \Im(x_0) : g(x) \le f(x) \le h(x)$$

Th:
$$\exists \lim_{x \to x_0} f(x) = \ell$$



Applicazioni

$$\lim_{x \to \pm \infty} \frac{\cos x}{x^2}$$

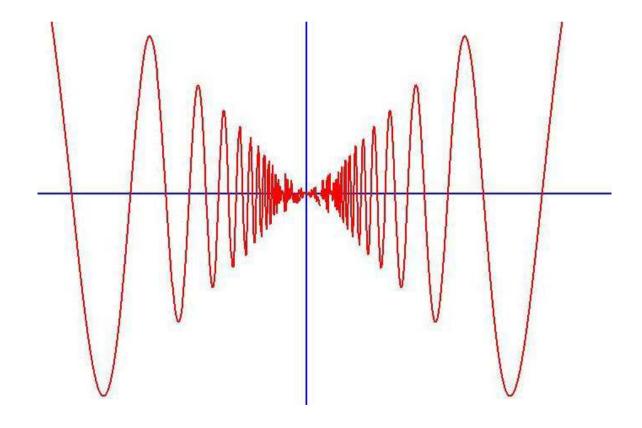
tale limite non posso calcolarlo in maniera immediata, in quanto $y = \cos x$ è una funzione oscillante, pertanto non ammette limite all'infinito

Per poterlo calcolare bisogna ricorrere al teorema del confronto:

$$-1 \le \cos x \le 1 \Rightarrow -\frac{1}{x^2} \le \frac{\cos x}{x^2} \le \frac{1}{x^2}$$
 Inoltre
$$\lim_{x \to \pm \infty} -\frac{1}{x^2} = 0 \qquad \lim_{x \to \pm \infty} \frac{1}{x^2} = 0 \Rightarrow \text{ per il teorema del}$$
 confronto
$$\lim_{x \to \pm \infty} \frac{\cos x}{x^2} = 0$$

Esempio

 $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = 0$ La funzione è pari, per cui dimostriamo il limite destro con il teorema del confronto



Teorema della permanenza del segno (dim. svolta in aula)

Hp: 1)
$$\exists \lim_{x \to x_0} f(x) = \ell$$

2) $\ell > 0$
 $(\ell < 0)$

Th:
$$\exists I \in \Im(x_0) : \forall x \in I \cap D$$

$$\Rightarrow f(x) > 0$$

$$(f(x) < 0)$$

Teorema inverso (dim. svolta in aula)

Hp: 1)
$$\exists \lim_{x \to x_0} f(x) = \ell$$

2) $\forall x \in I \in \Im(x_0)$ $f(x) \ge 0$

Th:
$$\ell \ge 0$$

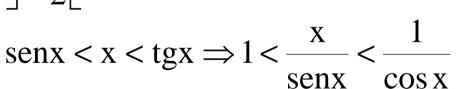
LIMITE NOTEVOLE

$$\lim_{x \to 0} \frac{\text{senx}}{x} = 1$$

Per dimostrare questo limite bisogna ricorrere al teorema del confronto

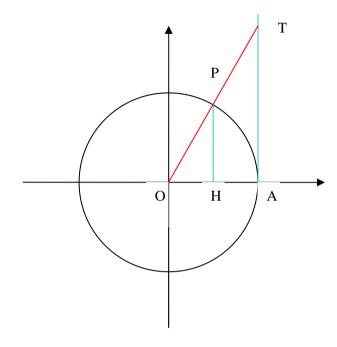
La funzione è pari, quindi dimostro il limite destro, mi pongo cioè in un intorno destro di 0 Considero come intorno destro di 0 l'intervallo aperto

$$\left|0,\frac{\pi}{2}\right|$$
 . In tale intervallo sicuramente $\sin x > 0$



$$\lim_{x \to 0^{+}} \cos x = 1 = \lim_{x \to 0^{+}} 1 \implies \lim_{x \to 0^{+}} \frac{\operatorname{senx}}{x} = 1$$

Essendo la funzione pari

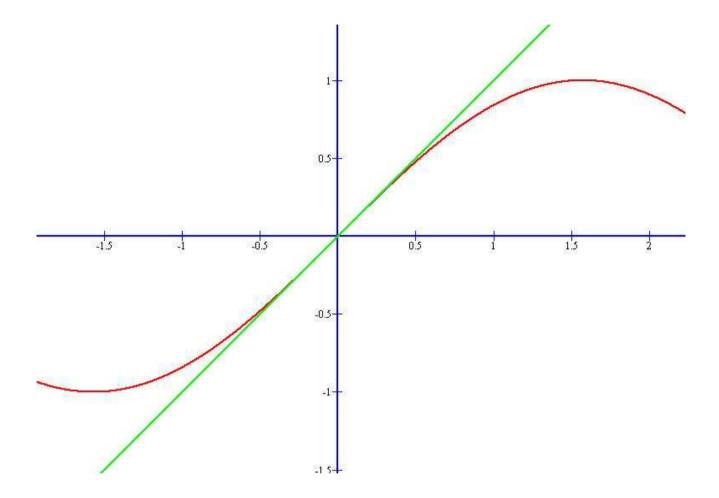


$$\cos x < \frac{\sin x}{x} < 1$$

$$\Rightarrow \lim_{x \to 0^{-}} \frac{\text{senx}}{x} = \lim_{x \to 0^{+}} \frac{\text{senx}}{x} = 1$$

senx ~ x

(passaggio all'asintotico)



Continuiamo a studiare la funzione
$$y = \frac{senx}{x}$$
 D=] $-\infty$,0[\cup]0,+ ∞ [

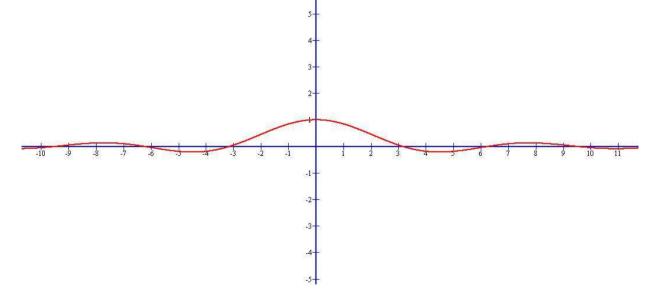
$$\lim_{x \to \pm \infty} \frac{\text{senx}}{x} = 0$$

$$y = \frac{\text{senx}}{x} \text{ funzione pari}$$

 $-1 \le \text{senx} \le 1$ se $x \to +\infty$ allora è una quantità positiva, per cui

$$-\frac{1}{x} \le \frac{\operatorname{senx}}{x} \le \frac{1}{x} \implies \lim_{x \to +\infty} \frac{1}{x} = 0 \quad \text{e} \quad \lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\Rightarrow \text{per il teorema del}$$



confronto

$$\lim_{x \to \pm \infty} \frac{\text{senx}}{x} = 0$$