ABSTRACT: We consider the open unit disk \mathbb{D} equipped with the hyperbolic metric and the associated hyperbolic Laplacian \mathcal{L} . For $\lambda \in \mathbb{C}$ and $n \in \mathbb{N}$, a λ -polyharmonic function of order n is a function $f: \mathbb{D} \to \mathbb{C}$ such that $(\mathcal{L} - \lambda I)^n f = 0$. If n = 1, one gets λ -harmonic functions. Based on a Theorem of Helgason on the latter functions, we prove a boundary integral representation theorem for λ -polyharmonic functions. For this purpose, we first determine n^{th} -order λ -Poisson kernels. Subsequently, we introduce the λ -polyspherical functions and determine their asymptotics at the boundary $\partial \mathbb{D}$, i.e., the unit circle. In particular, this proves that, for eigenvalues not in the interior of the L^2 -spectrum, the zeroes of these functions do not accumulate at the boundary circle. Hence the polyspherical functions can be used to normalise the n^{th} -order Poisson kernels. By this tool, we extend to this setting several classical results of potential theory: namely, we study the boundary behaviour of λ -polyharmonic functions, starting with Dirichlet and Riquier type problems and then proceeding to Fatou type admissible boundary limits.

In collaboration with Maura Salvatori and Massimo Picardello, JFA 2024.