Qualitative properties to magnetoelastic plates
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Abstract

In this paper one proves that the semigroup associated to a class of
magnetoelastic plate models is analytic.

1 Introduction

Let us suppose that a magnetoelastic plate is configured over an open bounded
and simply connected set 2 C R2, with boundary I', and consider the model given
by

Wit + pA%w + VX [Vxw ] -Hy —aVx[Vx =] -Hy = 0 in Qx]0,T], (1.1)
=i+ VX[V 4+ VX[V xwH)]=0 in Qx]0,T], (1.2)
dive =0 in Qx]0,T[, (1.3)

with boundary conditions

0
S~ v=uvxVx=z=0, w:a—wzo on I'x]0,T], (1.4)
v
and initial data
w0)=wy wi(0)=w; and =(0)==p in Q. (1.5)



Here, w denotes the transverse displacement of the plate, ~ = (h',h2) is the
electromagnetic field, H; = (H}, H?), i = 1,2, are two constant magnetic fields,
a, u, B are positive real numbers. The physical motivation of the problem can
be founded, for instance, in [2, 12]. This problem is closely related to the linear
thermoelastic plate model. In this direction, Renardy and Liu [7] showed that the
corresponding semigroup is analytic.

Concerning three-dimensional magnetoelastic materials, one has the work of
Andreou and Dassios [1], who showed that the solutions decays polynomially to
zero provided the material is configured in the whole R3 space. See also [9, 10].
On the other hand, Duyckaerts [3], using micro-local analysis, showed the lack
of exponential stability for three-dimensional magnetoelastic model and gave a
complete description of the uniform rate of decay of the solutions in bounded
domains.

The main purpose of the present paper is to show the analyticity to the mag-
netoelastic plate model (1.1)-(1.5) in the case H; and Hy are linearly independent
vector fields. In particular our result implies the exponential stability.

2 The main result

Let us begin with some notations and remarks. For < : R? — R? we define

Vx~=Vxeh',h)T := 0, h* - h', (2.6)
where 0; = 88 . Similarly, for w : R? — R, we define
T
o Ow
V Xw:= (—alw)' (2.7)
Note that V x [V x w] = —Aw. Besides, for eu : R? — R? we have

Aeu = Vdiveu — V x [V X eul. (2.8)

Let us consider
Y :={= e L*(Q) x L*(Q); divs=0inQ and ev-~=0onl},
which is a Hilbert space when equipped with the inner-product
(hy, =s)y = %/Q =172 d.
Then we introduce the operator B, defined by
Beg =V x [V X g, (2.9)
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with domain
DB)= {ege YN (H*? evx[Vxeg=0 on I}
Note that D(B) is dense in Y. Next, we denote by H the space
H = HZ(Q) x L*(Q) x Y,
with inner-product
(U, eUn) i = /Q o A + 00T + =1 7 (2.10)
where eU; = (w;,v;,~;)7 € H,i= 1,2. Then it is easy to see that H is a Hilbert

space.
Finally we define the unbounded operator A:H — H,

0 I 0
A= | —pd*() =V x[VxH()] aoVx[VxH()] |,
0 -0V x [V xeHs(.)] —=Vx[Vx()]

with domain
D(A) = HY(Q) N HZ(Q) x H(Q) x D(B).

It is not difficult to see that D(A) is dense in H, 0 € p(A), and that

«
(AeU,eU)y = —1||V x eHy v|[72(0) — BHV X =72 < 0. (2.11)

Therefore we have:

Theorem 2.1. The operator A is the infinitesimal generator of a Cy-semigroup
of contraction. Furthermore, this semigroup is the one associated to the system

(1.1)-(1.5).
Our main result is the following.

Theorem 2.2. Let eH; and e¢Hy be two linearly independent magnetic fields.
Then the semigroup associated to the system (1.1)-(1.5) is analytic.

3 Proof of main result

We use the following characterization of analytic semigroups, as in [8, 11].
Theorem 3.1. A semigroup of contractions { e };>¢ is analytic if and only if

iR C p(A) and limsup||n(inI — A)~ |z < o0, (3.12)

[n]—o0

where p(A) is the resolvent set of A.
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We note that the condition (3.12) is equivalent to show that the solution eU
of the spectral equation
(inl — A)eU = eF (3.13)

is uniformly bounded by e F" with respect to the norm of H, over the whole imag-
inary axis.

Lemma 3.1. If H; and Hy are linearly independent, then iR C p(A).

Proof. Suppose iR C p(A) does not hold. Then there exist eigenvectors eU such

that =~ = V x Hyv = 0, which imply that V x [V x Hyv] = 0. Since v = 9% =0,

we have that V x Hyv = 0. Because of the linear independency of H; and Hs we
conclude that v = 0. Therefore w = 0, which is a contradiction.

The equation (3.13), in terms of the components, can be written as
inw—v = fi in H(W,14)
inv 4 uA’w + 4V x [V x eHyv] — aV x [V x =] - eHy fo in L?*(SYB.15)
M=+ PV x [VxeHw|+VXx[Vx=] = efs inY, (3.16)

where
U= (w,v, ~)T € D(A), eF = (f1, f2, ef3) € H.

Lemma 3.2. The solution eU of the spectral equation (3.13) satisfies
o
WMV x eHyvl[72 () + IV * =2 ) < NleUllnlleFln- (3.17)

Proof. Taking inner-product of equation (3.13) with eU in H and using equation
(3.20) our conclusion follows.

Our next step is to estimate the term n~.

Lemma 3.3. For any ¢ > 0 there exists C° > 0 such that the solution eU of
(3.13) verifies
I [[=[[% < elnPC eVl + C2lleF |, (3.18)

where C > 0 is a constant not depending on €.
Proof. Multiplying equation (3.16) by 77%5 and integrating over () we get
.o & 2 g . _ a 2
in |[=]?de—an | VxeHw -VXx=~dr+n |V x =|*dz
BJa Q BJa
efs - ~dz, (3.19)

«
= n—=
ﬁ Q
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from where it follows that

«
Ul B/Q =1 dz < ellvllFp o) + CelleUlllleF |l

Using interpolation we get

1/2 1/2

HUHH(%(Q) < C||UHH§(Q)HUHL2<Q)'

From (3.14) we see that

A2 < [nlllAwlLe) + [[Afill2 @)
< ChllleU||w + ClleF .

Combining (3.21) and (3.22) it follows that

1/2

1/2 1/2
Wlmye < CUnl"2lUIL2 + eF |1l g
1/2 1/2
< ClpY2(|eU]l + ClleF |3/ leU] 3/

Then putting this last inequality into (3.20) yields (3.18).

(3.20)

(3.21)

(3.22)

Lemma 3.4. Let Hy and Hs be linearly independent, and let Q0 be a simply
connected bounded set of R?. Then for any e > 0 there evists C} > 0 such that

the solution €U of (3.13) verifies
[P llol|22 (o) < eClnlPlleUl3, + CelleF 1%,
where C > 0 is a constant not depending on €.

Proof. Multiplying equation (3.16) by Hov we get

IN

|17\/ |V x Hyv|? dz
Q

IN

Using Lemma 3.3 with € = 0/4c;,
il [ 1V % Hau do < 8lnP |20 + cslleF
Q
From Lemma 3.2 we get

I / IV x Hyof? di < 8|V + csl 2 F .
Q
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clnl|lly o]l g ) + clnllleFllnlleUll

(3.23)

0
csnl*blly + 5 nPlleUll + elnllleFlllleUl -



Denoting

Hl— —H?*~— = Hyv=GC
181‘2 181’1 VX v b
ov ov
Hi— -H}— = VxHuw=0G
28$2 28$1 x 2v >

and using the fact that H; and Hy are linearly independent, we conclude that
"2V p20) < ClnlY2(1Gillz20) + ClnlY 2| Gall 120
From Lemma 3.3, we conclude that for any € > 0 there exists Ce > 0 such that
nlIVoll2eq) < eClul?lleUl3 + CeleF |13, (3.24)

Now, fixing v given by €U, let us consider vy, vy the solution of

mvr —Avy = f43.25)
invy + pAw + 9V x [V x eHiv] + Avy —aV x [V x =]|-eHy = 0{3.26)
with
vy =v2=0 on I.
Then we have v = vy + ve. It is not difficult to see that
Inlllvrl z2e) + 112 Vill L2 ) + lvillaza) < clleF||n. (3.27)
From (3.26) we get
nlllvallz-2) < ClleUlly + Clluill 2o
C
< CleUlln+ m\ld’llﬁ-
Using interpolation, inequality (3.24) and that vy = v — v1, we get
loallza < Cllually? z(mnvzum(m
1/3 2/3
< o ‘ueUnH + oaglleFlae) - (cClallevl+ -l
< EC||€U||H+| ‘||€FHH,
which implies that
o2l L2(0) < €ClleU|l3, + —|| Ff3.
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Since v = vy + v, using the above inequality and (3.27) we have
Ce

e F 13-
|

vl L2() < ClleUF +
Then (3.23) follows.
Proof of Theorem 2.2: We apply Theorem 3.1. From Lemma 3.1 we know that
iR C p(A). Tt remains to show that solutions eU of (3.13) are uniformly bounded

with respect to 7.
Multiplying equation (3.15) by ¥ and using (3.14) we get

in/ |v|? da + u/ Aw(—inAw — A f1) dx — a/ V x V= eHyv dx
Q Q Q

+/ |V><5H1v|2dx=/f2.ﬁda:.
Q Q

Therefore

IN

Inf? / [of2 dz + Cln| [T ¢l [ Fl

elnPlleUll3, + CelleF 3

Inf? / |Aw]? dx

Using the above inequality together with Lemmas 3.3 and 3.4, we infer that

A

mPleUl% < €C U3, + CelleF 13, (3.28)
Taking e small such that eC' < 1 we conclude that
mPlleUl3 < CleFll%, YneR

This implies the analyticity of eAt.

References

[1] E. Andreou, G. Dassios, Dissipation of energy for magnetoelastic waves in a
conductive medium, Quart. Appl. Math. 55 (1997), no. 1, 23-39.

[2] V. Priimenko, M. Vishnevskii, Mathematical problems of electromagnetoelastic
interactions, Bol. Soc. Parana. Mat. (3) 25 (2007), no. 1-2, 55-66.

[3] T. Duyckaerts, Estabilization of the linear system of magnetoelasticity, preprint
2004, [http://arxiv.org/abs/math/0407257].

[4] G.Duvaut, J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag,
Berlin-New York, 1976.

95



[5] A. C. Eringen, G. A. Maugin, Electrodynamics of Continua. I. Foundations
and Solid Media, Springer-Verlag, New York, 1990.

[6] J. Lagnese, J.-L. Lions, Modelling Analysis and Control of Thin Plates,
Recherches en Mathématiques Appliquées 6, Masson, Paris, 1988.

[7] Z.-Y. Liu, M. Renardy, A note on the equations of a thermoelastic plate, Appl.
Math. Lett. 8 (1995), no. 3, 1-6.

[8] Z.Liu, S. Zheng, Semigroups Associated with Dissipative Systems, Chapman &
Hall/CRC Research Notes in Mathematics, 398. Chapman & Hall/CRC, Boca
Raton, FL, 1999.

[9] J. E. Munoz Rivera, R. Racke, Magneto-thermo-elasticity - large-time behavior
for linear systems, Adv. Differential Equations 6 (2001), no. 3, 359-384.

[10] J. E. Munoz Rivera, M. De Lima Santos, Polynomial stability to three-
dimensional magnetoelastic waves, Acta Appl. Math. 76 (2003), no. 3, 265-281.

[11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Dif-
ferential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New
York, 1983.

[12] C. M. Purushothama, Magneto-Thermo-Elastic Plane Waves, Proc. Cam-
bridge Philos. Soc. 61 (1965) 939-944.

96



