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Abstract

In this paper one proves that the semigroup associated to a class of
magnetoelastic plate models is analytic.

1 Introduction

Let us suppose that a magnetoelastic plate is configured over an open bounded
and simply connected set Ω ⊂ R2, with boundary Γ, and consider the model given
by

ωtt + µ∆2ω + γ∇×[∇×ωtH1] · H1 − α∇×[∇× !] · H2 = 0 in Ω×]0, T [, (1.1)

!t + ∇× [∇× !] + β∇× [∇× ωtH2] = 0 in Ω×]0, T [, (1.2)

div! = 0 in Ω×]0, T [, (1.3)

with boundary conditions

! · ν = ν × ∇× ! = 0, ω =
∂ω

∂ν
= 0 on Γ×]0, T [, (1.4)

and initial data

ω(0) = ω0 ωt(0) = ω1 and !(0) = !0 in Ω. (1.5)
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Here, ω denotes the transverse displacement of the plate, ! = (h1, h2) is the
electromagnetic field, Hi = (H1

i , H2
i ), i = 1, 2, are two constant magnetic fields,

α, µ, β are positive real numbers. The physical motivation of the problem can
be founded, for instance, in [2, 12]. This problem is closely related to the linear
thermoelastic plate model. In this direction, Renardy and Liu [7] showed that the
corresponding semigroup is analytic.

Concerning three-dimensional magnetoelastic materials, one has the work of
Andreou and Dassios [1], who showed that the solutions decays polynomially to
zero provided the material is configured in the whole R3 space. See also [9, 10].
On the other hand, Duyckaerts [3], using micro-local analysis, showed the lack
of exponential stability for three-dimensional magnetoelastic model and gave a
complete description of the uniform rate of decay of the solutions in bounded
domains.

The main purpose of the present paper is to show the analyticity to the mag-
netoelastic plate model (1.1)-(1.5) in the case H1 and H2 are linearly independent
vector fields. In particular our result implies the exponential stability.

2 The main result

Let us begin with some notations and remarks. For ! : R2 → R2 we define

∇× ! = ∇× ε(h1, h2)T := ∂1 h2 − ∂2 h1, (2.6)

where ∂i =
∂

∂ xi
. Similarly, for ω : R2 → R, we define

∇× ω :=

(

∂2ω
−∂1ω

)

. (2.7)

Note that ∇× [∇× ω] = −∆ω. Besides, for εu : R2 → R2 we have

∆ εu = ∇div εu −∇× [∇× εu]. (2.8)

Let us consider

Y := {! ∈ L2(Ω) × L2(Ω); div ! = 0 in Ω and εν · ! = 0 on Γ },

which is a Hilbert space when equipped with the inner-product

〈h1, !2〉Y =
α

β

∫

Ω
!1!2 dx.

Then we introduce the operator B, defined by

Bεg = ∇× [∇× εg], (2.9)
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with domain

D(B) = { εg ∈ Y ∩ (H2)2; εν × [∇× εg] = 0 on Γ}.

Note that D(B) is dense in Y. Next, we denote by H the space

H = H2
0 (Ω) × L2(Ω) × Y,

with inner-product

〈εU1, εU2〉H =

∫

Ω
µ∆ω1∆ω2 + v1v2 +

α

β
!1 · !2 dx, (2.10)

where εUi = (ωi, vi, !i)T ∈ H , i = 1, 2. Then it is easy to see that H is a Hilbert
space.

Finally we define the unbounded operator A : H → H ,

A =







0 I 0

−µ∆2(·) −γ∇× [∇× H1(·)] α∇× [∇× H2(·)]

0 −β∇× [∇× εH2(.)] −∇× [∇× (·)]






,

with domain
D(A) = H4(Ω) ∩ H2

0 (Ω) × H2
0 (Ω) ×D(B).

It is not difficult to see that D(A) is dense in H, 0 ∈ ρ(A), and that

〈A εU, εU〉H = −γ||∇ × εH1 v||2L2(Ω) −
α

β
||∇ × !||2L2(Ω) ≤ 0. (2.11)

Therefore we have:

Theorem 2.1. The operator A is the infinitesimal generator of a C0-semigroup
of contraction. Furthermore, this semigroup is the one associated to the system
(1.1)-(1.5).

Our main result is the following.

Theorem 2.2. Let εH1 and εH2 be two linearly independent magnetic fields.
Then the semigroup associated to the system (1.1)-(1.5) is analytic.

3 Proof of main result

We use the following characterization of analytic semigroups, as in [8, 11].

Theorem 3.1. A semigroup of contractions { etA }t≥0 is analytic if and only if

iR ⊂ ρ(A) and lim sup
|η|→∞

||η(iη I −A)−1||L(H) < ∞, (3.12)

where ρ(A) is the resolvent set of A.
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We note that the condition (3.12) is equivalent to show that the solution εU
of the spectral equation

(iη I −A)εU = εF (3.13)

is uniformly bounded by εF with respect to the norm of H, over the whole imag-
inary axis.

Lemma 3.1. If H1 and H2 are linearly independent, then iR ⊂ ρ(A).

Proof . Suppose iR ⊂ ρ(A) does not hold. Then there exist eigenvectors εU such
that ! = ∇× H1v = 0, which imply that ∇× [∇× H2v] = 0. Since v = ∂v

∂ν = 0,
we have that ∇× H2v = 0. Because of the linear independency of H1 and H2 we
conclude that v = 0. Therefore ω = 0, which is a contradiction.

The equation (3.13), in terms of the components, can be written as

iη ω − v = f1 in H2
0 (Ω),(3.14)

iη v + µ∆2ω + γ∇× [∇× εH1v] − α∇× [∇× !] · εH2 = f2 in L2(Ω),(3.15)

iη! + β∇× [∇× εH2v] + ∇× [∇× !] = εf3 in Y, (3.16)

where
εU = (ω, v, !)T ∈ D(A), εF = (f1, f2, εf3)

T ∈ H.

Lemma 3.2. The solution εU of the spectral equation (3.13) satisfies

γ||∇ × εH1 v||2L2(Ω) +
α

β
||∇ × !||2L2(Ω) ≤ ||εU ||H||εF ||H. (3.17)

Proof . Taking inner-product of equation (3.13) with εU in H and using equation
(3.20) our conclusion follows.

Our next step is to estimate the term η!.

Lemma 3.3. For any ε > 0 there exists C0
ε > 0 such that the solution εU of

(3.13) verifies
|η|2 ||!||2Y ≤ ε |η|2C ||εU ||2H + C0

ε ||εF ||2H, (3.18)

where C > 0 is a constant not depending on ε.

Proof . Multiplying equation (3.16) by ηα
β ! and integrating over Ω we get

iη2 α

β

∫

Ω
|!|2 dx − αη

∫

Ω
∇× εH2v · ∇ × ! dx + η

α

β

∫

Ω
|∇ × !|2 dx

= η
α

β

∫

Ω
εf3 · ! dx, (3.19)
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from where it follows that

|η|2
α

β

∫

Ω
|!|2 dx ≤ ε‖v‖2

H1
0
(Ω) + Cε||εU ||H||εF ||H. (3.20)

Using interpolation we get

||v||H1
0
(Ω) ≤ C||v||1/2

H2
0
(Ω)

||v||1/2
L2(Ω). (3.21)

From (3.14) we see that

||∆ v||L2(Ω) ≤ |η|||∆ω||L2(Ω) + ||∆f1||L2(Ω)

≤ C|η|||εU ||H + C||εF ||H. (3.22)

Combining (3.21) and (3.22) it follows that

‖v‖H1
0
(Ω) ≤ C(|η|1/2||εU ||1/2

H + ||εF ||1/2
H )||v||1/2

L2(Ω)

≤ C|η|1/2||εU ||H + C||εF ||1/2
H ||εU ||1/2

H .

Then putting this last inequality into (3.20) yields (3.18).

Lemma 3.4. Let H1 and H2 be linearly independent, and let Ω be a simply
connected bounded set of R2. Then for any ε > 0 there exists C1

ε > 0 such that
the solution εU of (3.13) verifies

|η|2||v||2L2(Ω) ≤ ε C|η|2||εU ||2H + C1
ε ||εF ||2H, (3.23)

where C > 0 is a constant not depending on ε.

Proof . Multiplying equation (3.16) by H2v we get

|η|

∫

Ω
|∇ × H2v|

2 dx ≤ c|η|2‖h‖Y‖v‖H1
0
(Ω) + c|η|||εF ||H||εU ||H

≤ cδ|η|
2‖h‖Y +

δ

2
|η|2||εU ||H + c|η|||εF ||H||εU ||H.

Using Lemma 3.3 with ε = δ/4cδ,

|η|

∫

Ω
|∇ × H2v|

2 dx ≤ δ|η|2||εU ||H + cδ||εF ||2H.

From Lemma 3.2 we get

|η|

∫

Ω
|∇ × H1v|

2 dx ≤ δ|η|2||εU ||H + cδ||εF ||2H.
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Denoting

H1
1
∂v

∂x2
− H2

1
∂v

∂x1
= ∇× H1v = G1,

H1
2
∂v

∂x2
− H2

2
∂v

∂x1
= ∇× H2v = G2,

and using the fact that H1 and H2 are linearly independent, we conclude that

|η|1/2‖∇v‖L2(Ω) ≤ C|η|1/2‖G1‖L2(Ω) + C|η|1/2‖G2‖L2(Ω).

From Lemma 3.3, we conclude that for any ε > 0 there exists Cε > 0 such that

|η|‖∇v‖2
L2(Ω) ≤ εC|η|2‖εU‖2

H + C1
ε ||εF ||2H. (3.24)

Now, fixing v given by εU , let us consider v1, v2 the solution of

iη v1 − ∆v1 = f2,(3.25)

iη v2 + µ∆2ω + γ∇× [∇× εH1v ] + ∆v1 − α∇× [∇× ! ] · εH2 = 0,(3.26)

with
v1 = v2 = 0 on Γ.

Then we have v = v1 + v2. It is not difficult to see that

|η|‖v1‖L2(Ω) + |η|1/2‖∇v1‖L2(Ω) + ‖v1‖H2
0
(Ω) ≤ c||εF ||H. (3.27)

From (3.26) we get

|η|‖v2‖H−2(Ω) ≤ C‖εU‖H + C‖v1‖L2(Ω)

≤ C‖εU‖H +
C

|η|
‖εF‖H.

Using interpolation, inequality (3.24) and that v2 = v − v1, we get

‖v2‖L2(Ω) ≤ C‖v2‖
1/3
H−2(Ω)‖v2‖

2/3
H1

0
(Ω)

≤ C

(

1

|η|
‖εU‖H +

1

|η|2
‖εF‖H

)1/3 (

εC|η|‖εU‖2
H +

Cε

|η|
||εF ||2H

)2/3

≤ εC‖εU‖H +
Cε

|η|
‖εF‖H,

which implies that

‖v2‖L2(Ω) ≤ εC‖εU‖2
H +

Cε

|η|
‖εF‖2

H.
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Since v = v1 + v2, using the above inequality and (3.27) we have

‖v‖L2(Ω) ≤ εC‖εU‖2
H +

Cε

|η|
‖εF‖2

H.

Then (3.23) follows.

Proof of Theorem 2.2: We apply Theorem 3.1. From Lemma 3.1 we know that
iR ⊂ ρ(A). It remains to show that solutions εU of (3.13) are uniformly bounded
with respect to η.

Multiplying equation (3.15) by v and using (3.14) we get

iη

∫

Ω
|v|2 dx + µ

∫

Ω
∆ω(−iη∆ω − ∆ f1) dx − α

∫

Ω
∇×∇! εH2v dx

+

∫

Ω
|∇ × εH1 v|2 dx =

∫

Ω
f2.v dx.

Therefore

|η|2
∫

Ω
|∆ω|2 dx ≤ |η|2

∫

Ω
|v|2 dx + C|η| ||εU ||H||εF ||H

≤ ε|η|2‖εU‖2
H + Cε‖εF‖2

H.

Using the above inequality together with Lemmas 3.3 and 3.4, we infer that

|η|2‖εU‖2
H ≤ ε C |η|2 ‖εU‖2

H + Cε‖εF‖2
H. (3.28)

Taking ε small such that εC < 1 we conclude that

|η|2‖εU‖2
H ≤ C‖εF‖2

H, ∀ η ∈ R.

This implies the analyticity of eAt.
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Recherches en Mathématiques Appliquées 6, Masson, Paris, 1988.

[7] Z.-Y. Liu, M. Renardy, A note on the equations of a thermoelastic plate, Appl.
Math. Lett. 8 (1995), no. 3, 1-6.

[8] Z. Liu, S. Zheng, Semigroups Associated with Dissipative Systems, Chapman &
Hall/CRC Research Notes in Mathematics, 398. Chapman & Hall/CRC, Boca
Raton, FL, 1999.
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