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Abstract

Non-steady, two-dimensional magnetohydrodynamics is investigated un-
der a constant divergence geometric constraint. An appropriate geometric
parametrisation is introduced and a novel class of 2+1-dimensional motions
thereby isolated.

1 Introduction

The intrinsic nonlinearity of the governing equations of magneto-hydrodynamics
is a major impediment to construction of exact solutions. Lie group techniques
may be employed systematically to construct similarity solutions [1–3]. In [4], a
novel method was adopted wherein the nonlinear acceleration term in the govern-
ing Lundquist equations was assumed to be conservative.

Here, we proceed with a geometric approach. This is motivated by previous
work in which a vanishing divergence constraint has been imposed in steady, spa-
tial gasdynamics and magneto-hydrostatics and shown to lead, remarkably, to the
nonlinear Schrödinger (NLS) equation of modern soliton theory [5–9]. For the
2+1-dimensional magneto-hydrodynamic equations under present investigation,
a constant divergence constraint is also shown to lead to an integrable connec-
tion, namely to the modified Korteweg-de Vries (mkdV) hierarchy. The procedure
allows the construction of a new class of exact solutions to the nonlinear magne-
tohydrodynamic system.

2 The magnetohydrodynamic system

The governing equations of non-dissipative magnetohydrodynamics are:

div q = 0 , (2.1)

173



ρ [
∂q

∂t
+ q · ∇q ]− µ curlH×H +∇p = 0 , (2.2)

div H = 0 , (2.3)
∂H

∂t
= curl (q×H ) , (2.4)

where H,q, p, ρ denote, in turn, the magnetic field, velocity, pressure and constant
density, while µ is the magnetic permeability. In the two-dimensional reduction,
the magnetic induction equation (2.3) shows that

H = ∇A× k (2.5)

where A is the magnetic flux. The Faraday Law (2.4) now yields

(
∂

∂t
+ q · ∇)A = 0 , (2.6)

so that A is convected with the conducting fluid.
Here, a geometric parametrisation recently introduced in [11] in the context

of the kinematics of fibre-reinforced fluids is applied to construct a new class of
solutions of the magnetohydrodynamic system (2.1)-(2.4) for which

∇× [
∂q

∂t
+ q · ∇q ] = 0 . (2.7)

The latter constraint was introduced in a recent study of 2+1-dimensional magneto-
hydrodynamics in [5] in which the conducting motions so derived were termed
‘accelerated’. In [5], an elastic gas law p = c

2
s ρ was adopted (where cs is constant

sound speed) whereas here, incompressibility is assumed.
In view of (2.7), a potential Π exists such that

ρ [
∂q

∂t
+ q · ∇q ] = −∇Π (2.8)

whence, the magnetohydrodynamic momentum equation (2.2) becomes

∇(p−Π) + µ(∇2
A)∇A = 0 (2.9)

with compatibility condition

∂(∇2
A, A)

∂(x, y)
= 0 , (2.10)

so that
∇2

A = Φ(A) . (2.11)
Accordingly, 2+1-dimensional solutions of the pseudo-hydrodynamic system

div q = 0 , (2.12)

ρ [
∂q

∂t
+ q · ∇q ] +∇Π = 0 (2.13)

will be sought. Associated magnetohydrodynamic flows are then determined via
magnetic potentials A such that the convection condition (2.6) and the nonlinear
constraint (2.11) are simultaneously satisfied.
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3 A parametrisation

Here, attention is restricted to the 2+1-dimensional version of the magneto-
hydrodynamic system (2.1)-(2.4). A geometric parametrisation is introduced in
terms of a ‘fibre’ direction t subject to the constraint [11]

∂t

∂t
+ (q · ∇)t = (t · ∇)q . (3.1)

The kinematic conditions (2.12)-(2.13) which attend the motion of fibre-reinforced
fluids have been investigated in [10–12]. In the following, we seek to construct a
class of ‘accelerated’ motions of the 2+1-dimensional system (2.12)-(2.13) wherein

q = vt + wn (3.2)

and t is subject to the condition (3.1), while n is the principal unit normal to
these ‘fibre’ lines.

The Serret-Frenet relations for the t-lines and the n-lines are, respectively

δ

δs

�
t

n

�
=

�
0 κ

−κ 0

� �
t

n

�
, (3.3)

and
δ

δn

�
t

n

�
=

�
0 θ

−θ 0

� �
t

n

�
, (3.4)

where δ/δs = t · ∇ and δ/δn = n · ∇ denote, in turn, the directional derivatives
in the tangential and principal normal directions to the t-lines. The quantities κ

and −θ = −div t are the curvatures of the t-lines and n-lines respectively.
The compatibility of the pair (3.3), (3.4) requires that

δκ

δn
− δθ

δs
= κ

2 + θ
2

, (3.5)

on use of the commutator relation [9]
�

δ

δn
,

δ

δs

�
=

δ
2

δnδs
− δ

2

δsδn
= κ

δ

δs
+ θ

δ

δn
. (3.6)

The general solution of (3.5) may parametrised in terms of an angle ϕ where

κ =
δϕ

δs
, θ =

δϕ

δn
(3.7)

and
t = cos ϕ i + sinϕ j, n = − sin ϕ i + cos ϕ j , (3.8)

with i and j the usual unit vectors in the direction of the Cartesian x- and y-axes.
The parametrisation (3.8) implies that

∂

∂t

�
t

n

�
=

�
0 µ̄

−µ̄ 0

� �
t

n

�
, (3.9)
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where
µ̄ =

∂ϕ

∂t
. (3.10)

The relations (3.3), (3.4) and (3.9) now together show that
�

∂

∂t
,

δ

δs

�
=

∂

∂t

�
δ

δs

�
− δ

δs

�
∂

∂t

�
= µ̄

δ

δn
, (3.11)

�
∂

∂t
,

δ

δn

�
=

∂

∂t

�
δ

δn

�
− δ

δn

�
∂

∂t

�
= −µ̄

δ

δs
. (3.12)

Curvilinear coordinates of the form

s = s(x, y, t), n = n(x, y, t), τ = t (3.13)

are now introduced with
δ

δs
=

1
φ

∂

∂s
, (3.14)

δ

δn
=

1
ψ

∂

∂n
, (3.15)

∂

∂t
=

∂

∂τ
+ ρ̄

∂

∂s
+ σ̄

∂

∂n
(3.16)

where s and n parametrise the t-lines and n-lines respectively. The quantities
ρ̄(s, n, τ), σ̄(s, n, τ) and φ(s, n, τ), ψ(s, n, τ) are determined by the requirement
that the operators ∂/∂x, ∂/∂y, ∂/∂t commute. Thus, the commutator relation
(3.6), on use of (3.14), (3.15) leads to the conditions

ψs = ϕnφ, (3.17)

φn = −ϕsψ (3.18)

while the commutator relations (3.11), (3.12) acting, in turn, on φ and ψ, on use
of (3.14), (3.15) yield

φτ + ρ̄φs + σ̄φn + φρ̄s = 0 , (3.19)

µ̄φ + ψσ̄s = 0 , (3.20)

ψτ + ρ̄ψs + σ̄ψn + ψσ̄n = 0 , (3.21)

φρ̄n − µ̄ψ = 0 . (3.22)

The relations (3.17)-(3.22) provide six equations in the six unknowns φ, ψ, ϕ, ρ̄, σ̄

and µ̄.
As observed by Spencer [13], the continuity equation (2.1) together with the

constraint (3.1) imply the condition

[
∂

∂t
+ q · ∇ ] div t = 0 (3.23)

so that the quantity θ = div t is convected along the particle lines. This constraint
holds, in particular, in the privileged case when the divergence is everywhere
constant. It is with this class of motions that we shall be concerned in the sequel.

176



4 The constraint div t = 1

If div t is everywhere constant, then, without loss of generality, we may set

div t = 1 . (4.1)

Let r denote the position vector to a generic t-line, so that δr/δn = n. Then,

the constraint (4.1) shows, on use of (3.4) that δ(r − t)/δn =
1
ψ

∂(r − t)/∂n = 0

whence, on integration

r(s, n, τ) = t(s, n, τ) + R(s, τ) . (4.2)

Conversely, (4.2) shows that

δr

δs
= t = κn +

δR

δs
(4.3)

and
div r = div t + t · δR

δs
= div t + t · δr

δs
(4.4)

so that div t = 1. The relation (4.2) shows that the fibre lines are generalised trac-
trices associated with the base curve Γ0 : R = R(s, τ)(Eisenhart [14]). Moreover,
(4.2) imples that |r − R| = 1 so that the fibre line distributions are confined to
a strip bounded by the two curves Γ± which are parallel to and at unit distance
from Γ0.

If s is taken as arclength along the base curve Γ0 and T,N are its unit tangent
and principal normal then

Rs = T, Rτ = gT + hN (4.5)

where g = g(s, τ) and h = h(s, τ) remain to be determined. Compatibility of these
relations and of the Serret-Frenet and time evolution equations, namely

�
T

N

�

s

=
�

0 f

−f 0

� �
T

N

�
,

�
T

N

�

τ

=
�

0 �

−� 0

� �
T

N

�
,

(4.6)

where f(s, τ) is the curvature of Γ0, yields

fτ = �s, gs = hf ,

� = hs + gf .

(4.7)

Elimination of g in this system leads to

fτ = Rh, (4.8)
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where R = ∂
2
s + f

2 + fs∂
−1
s f is the recursion operator for the mkdV hierarchy of

solitonic equations [15]. Underlying geometry of the latter associated with planar
motion of an inextensible curve is discussed in [9]. In particular, if hs = f then
(4.8) reduces to the integrable mkdV equation

fτ = fsss + (3/2)f2
fs . (4.9)

If t and n are now decomposed in terms of T and N according to

t = cos ω T + sinω N, n = − sin ω T + cos ω N (4.10)

then the requirement rs = φ t applied to (4.2) implies, since

δr

δs
=

δt

δs
+

δR

δs
,

the relation

(cos ω T + sinω N)φ = −ωs sin ω T + f cos ω N + ωs cos ω N− f sin ω T + T ,

whence

(φ− cos ω)(cos ω T + sinω N) = (ωs + f − sin ω)(− sin ω T + cos ω N) .

so that
φ = cos ω, (4.11)

ωs = sinω − f. (4.12)

If T and N are, in turn, parametrised according to

T = cos ∆ i + sin ∆ j, N = − sin∆ i + cos ∆ j (4.13)

then (4.2) translate into the pair of relations

∆s = f, (4.14)

∆τ = � = hs + gf (4.15)

compatible modulo (4.7)1. Moreover,

t = cos (ω +�) i + sin(ω +�) j (4.16)

so that
ϕ = ω + ∆ . (4.17)

It is readily shown that the solution of the system (3.17)-(3.22) is given by

φ = cos ω, ψ = ωn ,

178



ρ̄ = −(h sin ω + g cos ω)/φ, σ̄ = −(ωτ + hs + h cos ω + g(f − sin ω))/ψ ,

µ̄ = −h/ cos ω .

(4.18)
augmented by the relation (4.18).

In addition, the following result may be established [12]:

Theorem I

The velocity
q = vt + wn (4.19)

where
v = −wn/ωn , ωn �= 0 (4.20)

ws = w cos ω − h (4.21)

and h, ω are the quantities in the decompositions (4.5) and (4.10), satisfies the
kinematic conditions

div q = 0 ,

∂t

∂t
+ q · ∇t = t · ∇q .

(4.22)

�
In the following the above result is exploited to construct a new class of exact

solutions of the 2+1-dimensional reduction of the magnetohydrodynamic system
(2.1)-(2.4).

5 2+1-dimensional magnetohydrodynamics with

div t = 1. A class of exact solutions

Here, we start with the pseudo-hydrodynamic system (2.12)-(2.13) and seek solu-
tions subject to the constraint (3.1) where q has the decomposition (4.19). Now,
if

Ω = |curlq| (5.1)

denotes the vorticity magnitude, then the compatibility condition for the momen-
tum equation (2.13) adopts the form

∂Ω
∂t

+ q · ∇Ω = 0 . (5.2)

Accordingly, it is required to construct simultaneous solutions of the continuity
equation (2.12) and constraint (3.1) modulo the restriction (5.2). Here, we exploit
the base solution of the kinematic conditions (2.12) and (3.1) as presented in [12]
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in the context of fibre-reinforced fluids and in which the base curve Γ0 is a straight
line undergoing an arbitrary rigid motion. In that case,

R = sT + P, T =

�
cos ∆
sin∆

�
, P =

�
α

β

�
, (5.3)

where ∆, α and β depend on τ alone. Thus,

Rτ = s∆τN + Pτ , N =

�
− sin∆
cos ∆

�
, (5.4)

so that
g = Pτ · T, h = s∆τ + Pτ · N (5.5)

in the decomposition (4.5)2. Since hs = ∆τ , it is seen that f = 0 whence (4.12)
has the general solution

ω = 2 tan−1[ c(n, τ)es ] (5.6)

while (4.19)-(4.21) admit the associated velocity

q = (q0 cos ω + h sin ω) t + (−q0 sin ω + h cos ω + ∆τ ) n ,

= q0T + hN + ∆τn

(5.7)

where q0 = q0(τ). Thus

Ω = curlq = curl (hN) + ∆τcurln

= ∆h×N + ∆τb = 2∆τb .

(5.8)

Now,

∂

∂t
+ q · ∇ =

∂

∂τ
− 1

φ
[h sin ω + g cos ω ]

∂

∂s
− 1

ψ
[ωτ + hs + h cos ω − g sin ω ]

∂

∂n

+
1
φ

[ q0 cos ω + h sin ω ]
∂

∂s
+

1
ψ

[−q0 sin ω + h cos ω + ∆τ ]
∂

∂n

=
∂

∂τ
− ωτ

ωn

∂

∂n
+ ( q0 − g )

∂

∂s
+ ( q0 − g )

∂

∂n
.

(5.9)
Accordingly, the convective condition (5.2) requires that

∆ττ = 0 . (5.10)

whence we obtain the constant vorticity condition

Ω = const , (5.11)

Constant vorticity flows are a fortiori universal in the sense of Marris [16] in
that curlΩ = 0. (c.f. Fosdick and Truesdell [17]).
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In order to construct associated ‘accelerated’ magnetohydrodynamic motions,
it is required to satisfy simultaneously the two conditions

∂A

∂t
+ q · ∇A = 0 , (5.12)

and
∇2

A = Φ(A) (5.13)

on the magnetic flux A.
Here, we illustrate the procedure by setting g = q0 (τ) consistent with f = 0

(c.f. (4.7)2) whence, in view of (5.9), the convective condition (5.12) requires that
A = A(ω, s). If we proceed with A = A(ω), so that it is required that

∂ω

∂t
+ q · ∇ω = 0 (5.14)

then

∇2
A = div(gradA) = div

�
δA

δs
t +

δA

δn
n

�

= div
�

A
�
ωs

φ
t +

A
�
ωn

ψ
n

�
= div (A� tanωt + A

�
n)

=
δ

δs
(A� tanω) + A

� tanω div t +
δ

δn
A
� + A

� div n .

Hence,

∇2
A =

1
φ

(A��
ωstanω + A

�sec2
ω ωs) + A

�tanω +
1
ψ

A
��
ωn −A

�
κ ,

where κ =
1
φ

ϕs =
ωs

φ
= tanω so that

∇2
A = A

��sec2
ω + A

�tanω sec2
ω ≡ Φ(A) (5.15)

and the requirement (5.13) is met. Moreover,

H =
�

δA

δs
t +

δA

δn
n

�
× b =

A
�(ω)

cos ω
[ −sin ω n + cos ω t ]

=
A
�(ω)

cos ω
T =

A
�(ω)

cos ω
[ cos∆ i + sin ∆ j ] ,

(5.16)

while

q = ( q0 −∆τ sin ω )T + ( h + ∆τ cos ω )N

= [ q0 cos ∆− h sin∆−∆τ sin(∆ + ω) ] i + [ q0 sin∆ + h cos ∆ + ∆τ cos(∆ + ω) ] j
(5.17)
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where h is given by (5.5)2 with ∆τ = ∆t = const.
Since

1
cos ω

∂

∂s
= cos(ω + ∆)

∂

∂x
+ sin(ω + ∆)

∂

∂y
,

1
ωn

∂

∂n
= − sin(ω + ∆)

∂

∂x
+ cos(ω + ∆)

∂

∂y

(5.18)

in particular,
1

cos ω
= cos(ω + ∆) sx + sin(ω + ∆) sy ,

0 = − sin(ω + ∆) sx + cos(ω + ∆) sy

whence
sx =

cos(ω + ∆)
cos ω

, sy =
sin(ω + ∆)

cos ω
. (5.19)

Moreover, (4.12) with f = 0 yields

ωx cos ω cos(ω + ∆) + ωy cos ω sin(ω + ∆) = sinω

so that
ω = sin−1[ y cos ∆− x sin∆ + T1(t) ] (5.20)

where T1(t) is arbitrary. It is readily verified that the required convective condition
(5.14) holds.

Equivalently, ω is given by (5.6), whence it may be shown that

δ

δn
[ ln c(n, τ) ] = cosec ω (5.21)

whence
(− sin(ω + ∆)

∂

∂x
+ cos(ω + ∆)

∂

∂y
) ln c = cosec ω

with general solution
c = T2(t)[ cosec ω + cot ω ] (5.22)

where T2(t) is arbitrary.
Accordingly, the relation (5.6) shows that the solution of the system (5.19) is

given by
s = 2 ln

�
tan

ω

2

�
− lnT2(t) . (5.23)

In addition, the class of magnetohydrodynamic solutions have the property

H · ∇ H = ΨΨ�( cos ∆ ωx + sin ∆ωy )( cos ∆ i + sin ∆ j ) = 0 (5.24)

on use of (5.20), so that the momentum equation reduces to (c.f. (2.13))

ρ

�
∂q

∂t
+ q · ∇q

�
+∇Π = 0 , (5.25)
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where Π = p +
1
2

µ H
2 is the total magnetic pressure. It is readily shown that

Πxy = 0.
The preceding may be summarised in :

Theorem II

The 2+1-dimensional magnetohydrodynamic system (2.1)-(2.5) admits the class
of exact solutions with

q = [ q0 cos ∆− h sin∆−∆t sin(∆ + ω) ] i + [ q0 sin∆ + h cos ∆ + ∆t cos(∆ + ω) ] j ,

H = Ψ(ω)( cos∆ i + sin ∆ j ) ,

where
ω = sin−1[ y cos ∆− x sin∆ + T1(t) ] ,

h = ∆t[ 2 ln
�
tan

ω

2

�
− T2(t) ]− αt sin∆ + βt cos ∆

and
∆t = const.

while α(t), β(t) are the entries in P. �

It is noted that the superposition

H
∗ = H + Ω(ω)k , q

∗ = q + Λ(ω)k (5.26)

extends the above class of base exact solutions to 3+1-dimensions.

Appendix

It may be shown that the system consisting of the kinematic conditions

divq = 0 ,

∂t

∂t
+ (q · ∇) t = (t · ∇)q ,

subject to the constraint
div t = 1

can be reduced to consideration of a single complex Liouville equation. The pro-
cedure is as follows.

The relation div t = δϕ/δn, shows that

ϕn = ψ

whence, (3.17) implies that

φ =
ψs

ψ
= cos ω .
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Let ρs =
ψs

ψ
so that

ψ = N(n, τ)eρ
.

Now,
ωsn = cos ω ωn, ρsn = − sin ω ωn

and the latter relation shows that
�

ρsn

ψ

�

n

= − cos ω ωn

whence �
ρsn

ψ

�

n

+ ρsψ = 0 ,

that is �
ρsn

Nep

�

n
+ ρsNe

ρ = 0 .

The re-parametrisation nN(n, τ)→ n now produces a 3rd order nonlinear equation
in ρ, namely �

ρsn

eρ

�

n
+ ρse

ρ = 0 .

Moreover,

(ρ + iω)sn = (ρs + iωs)n = ( cos ω + i[ sinω − f(s, τ ) ] )n

= ωn[− sin ω + i cos ω ] = iN(n, τ)eρ+iω
.

and the re-scaling nN(n, τ)→ n results in the complex Liouville equation

γsn = ie
γ

where γ = ρ + iω. It is noted that the latter admits the auto-Bäcklund transfor-
mation

∂s(γ� − γ) = β i exp
�

γ + γ
�

2

�
,

∂n(γ� + γ) =
4
β

sinh
�

γ
� − γ

2

�
,





Bβ

with associated permutability theorem

γ12 = γ0 + 2 ln
�
β1 e

γ1/2 + β2 e
γ2/2

β2 eγ1/2 − β1 eγ2/2

�
,

where β is a Bäcklund parameter, γ0 is a seed solution and γ1 = Bβ1γ0, γ2 =
Bβ2γ0, γ12 = Bβ1Bβ2γ0 = Bβ2Bβ1γ0.
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The permutability theorem may be used iteratively to generate solutions of
the original kinematic conditions via a seed solution γ0. In particular, the base
solution obtained in Section 5, for which

γ = ρ + i ω =
ωsn

ωn
+ i ω = cos ω + i ω

=
1− c

2
e
2s

1 + c2e2s
+ 2i tan−1[ces]

may be used in this connection.
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