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Abstract

In this work we study the global approximate multiplicative controllabil-
ity for the linear degenerate parabolic Cauchy-Neumann problem
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>>>:

vt − (a(x)vx)x = α(t, x)v in QT = (0, T )× (−1, 1)

a(x)vx(t, x)|x=±1 = 0 t ∈ (0, T )

v(0, x) = v0(x) x ∈ (−1, 1) ,

with the bilinear control α(t, x) ∈ L∞(QT ). The problem is strongly degen-
erate in the sense that a ∈ C1([−1, 1]), positive on (−1, 1), is allowed to
vanish at ±1 provided that a certain integrability condition is fulfilled. We
will show that the above system can be steered in L2(Ω) from any nonzero,
nonnegative initial state into any neighborhood of any desirable nonnegative
target-state by bilinear static controls. Moreover, we extend the above result
relaxing the sign constraint on v0.
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1 Introduction

Motivation

Climate depends on various parameters such as temperature, humidity, wind in-
tensity, the effect of greenhouse gases, and so on. It is also affected by a complex
set of interactions in the atmosphere, oceans and continents, that involve physical,
chemical, geological and biological processes.

One of the first attempts to model the effects of interaction between large ice
masses and solar radiation on climate is the one due, independently, by Budyko
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[5, 6] and Sellers [25] (see also [12, 13, 17] and the references therein). Such a model
studies how extensive the climate response is to an event such as a sharp increase
in greenhouse gases; in this case we talk about climate sensitivity. A process that
changes climate sensitivity is called feedback. If the process increases the intensity
of response we say that it has positive feedback, whereas it has negative feedback if
it reduces the intensity of response.

The Budyko-Sellers model studies the role played by continental and oceanic
areas of ice on climate change. In such a model, the sea level mean zonally averaged
temperature u(t, x) on the Earth, where t denotes time and x the sine of latitude,
satisfies the following degenerate Cauchy-Neumann problem (1.1) in the bounded
domain (−1, 1).

The effect of solar radiation on climate can be summarized in the following
figure

Figure 1: www.edu-design-principles.org (copyrighted by DPD)

We have the following energy balance :

Heat variation = Ra−Re+D

• Ra = absorbed energy

• Re = emitted energy

• D = diffusion

The general formulation of the Budyko-Sellers model on a compact surface M
without boundary is as follows

ut −∆Mu = Ra(t, x, u)−Re(t, x, u)

where u(t, x) is the distribution of temperature and ∆M is the classical Laplace-
Beltrami operator. Moreover,
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• Ra(t, x, u) = Q(t, x)β(x, u)

• Re(t, x, u) = A(t, x) + B(t, x)u

In the above, Q is the insolation function, and β is the coalbedo function (that is,
1-albedo function).
Albedo is the reflecting power of a surface. It is defined as the ratio of reflected
radiation from the surface to incident radiation upon it. It may also be expressed
as a percentage, and is measured on a scale from zero for no reflecting power of a
perfectly black surface, to 1 for perfect reflection of a white surface.

Figure 2: www.esr.org (copyrighted by ESR)

The main difference between Budyko’s model and the one by Sellers, is that
in the former the coalbedo function is discontinuous, while in the latter it is a
continuous function. In fact we have
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• Budyko

β(u) =






β0 u < −10

[β0, β1] u = −10

β1 u > −10 ,

• Sellers

β(u) =






β0 u < u−

line u− ≤ u ≤ u+

β1 u > u+ ,

where u± = −10± δ, δ > 0.

On M = Σ2 the Laplace-Beltrami operator is

∆M =
1

sin φ

�
∂

∂φ

�
sin φ

∂u

∂φ

�
+

1
sin φ

∂
2
u

∂λ2

�

where φ is the colatitude and λ is the longitude.

Figure 3: www.globalwarmingart.com (copyrighted by Global Warming Art)

In the one-dimensional Budyko-Sellers we take the average of the temperature
at x = cos φ and the Budyko-Sellers model reduces to






ut −
�
(1− x

2)ux

�
x

= g(t, x)h(x, u) + f(t, x), x ∈ (−1, 1)

(1− x
2)ux|x=±1 = 0 .

(1.1)
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Problem formulation

Let us consider the following Cauchy-Neumann strongly degenerate boundary lin-
ear problem in divergence form, governed in the bounded domain (−1, 1) by means
of the bilinear control α(t, x)






vt − (a(x)vx)x = α(t, x)v in QT = (0, T )× (−1, 1)

a(x)vx(t, x)|x=±1 = 0 t ∈ (0, T )

v(0, x) = v0(x) x ∈ (−1, 1) .

(1.2)

We assume that

1. v0 ∈ L
2(−1, 1)

2. α ∈ L
∞(QT )

3. a ∈ C
1([−1, 1]) satisfies

(a) a(x) > 0 ∀x ∈ (−1, 1), a(−1) = a(1) = 0
(b) A ∈ L

1(−1, 1), where A(x) =
�

x

0
ds

a(s) .

Remark We observe that

1. 1
a
�∈ L

1(−1, 1), so a(x) is strongly degenerate

2. the principal part of the operator in (1.2) coincides with that of the Budyko-
Sellers model for a(x) = 1− x

2. In this case A(x) = 1
2 ln

�
1+x

1−x

�
∈ L

1(−1, 1)

3. a sufficient condition for 3.b) is that a
�(±1) �= 0 (if a ∈ C

2([−1, 1]) the above
condition is also necessary).

We are interested in studying the multiplicative controllability of problem (1.2)
by the bilinear control α(t, x). In particular, for the above linear problem, we will
discuss results guaranteeing global nonnegative approximate controllability in large
time (for multiplicative controllability see [20, 23, 8]).
Now we recall one definition from control theory.

Definition 1.2

We say that the system (1.2) is nonnegatively globally approximately control-
lable in L

2(−1, 1), if for every ε > 0 and for every nonnegative v0(x), vd(x) ∈
L

2(−1, 1) with v0 �≡ 0 there are a T = T (ε, v0, vd) and a bilinear control α(t, x) ∈
L
∞(QT ) such that for the corresponding solution v(t, x) of (1.2) we obtain

�v(T, ·)− vd�L2(−1,1) ≤ ε .
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In the following we will sometimes use � · � instead of � · �L2(−1,1).

Main results

In this work at first the nonnegative global approximate controllability result is
obtained for the linear system (1.2) in the following theorem.

Theorem 1.3

The linear system (1.2) is nonnegatively approximately controllable in L
2(−1, 1)

by means of static controls in L
∞(−1, 1). Moreover, the corresponding solution to

(1.2) remains nonnegative at all times.

Then the results present in Theorem 1.3 can be extended to a larger class of
initial states.

Theorem 1.4

For any vd ∈ L
2(−1, 1), vd ≥ 0 and any v0 ∈ L

2(−1, 1) such that
� 1

−1
v0vddx > 0, (1.3)

for every ε > 0, there are T = T (ε, v0, vd) ≥ 0 and a static bilinear control,
α = α(x), α ∈ L

∞(−1, 1) such that

�v(T, ·)− vd�L2(−1,1) ≤ ε .

Remark The solution v(t, x) of the problem (1.2) in the assumptions of Theorem
1.4 does not remain nonnegative in QT , like in Theorem 1.3, but it can also assume
negative values.

Mathematical motivation

This note is inspired by [20, 8]. In [20] A.Y. Khapalov studied the global nonnega-
tive approximate controllability of the one dimensional non-degenerate semilinear
convection-diffusion-reaction equation governed in a bounded domain via the bi-
linear control α ∈ L

∞(QT ). In [8], the same approximate controllability property
is derived in suitable classes of functions that change sign.
In this note we extend some of the results of [20] to degenerate linear equations.
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General references for multiplicative controllability are, e.g., [18, 19, 21, 22, 23, 3].
In control theory, boundary and interior locally distributed controls are usually
employed (see, e.g., [9, 10, 11, 14, 15, 16]). These controls are additive terms
in the equation and have localized support. However, such models are unfit to
study several interesting applied problems such as chemical reactions controlled
by catalysts, and also smart materials, which are able to change their principal
parameters under certain conditions. This explains the growing interest in multi-
plicative controllability.

2 Preliminaries

Positive and negative part

Given Ω ⊆ Rn, v : Ω −→ R we consider the positive-part function

v
+(x) = max (v(x), 0) , ∀x ∈ Ω ,

and the negative-part function

v
−(x) = max (0,−v(x)) , ∀x ∈ Ω .

Then we have the following equality

v = v
+ − v

− in Ω

For the functions v
+ and v

− the following result of regularity in Sobolev’s spaces
will be useful (see [24], Appendix A ).
Theorem 2.1

Let Ω ⊂ Rn
, u : Ω −→ R, u ∈ H

1,s(Ω), 1 ≤ s ≤ ∞. Then

u
+
, u

− ∈ H
1,s(Ω)

and for 1 ≤ i ≤ n

(u+)xi =






uxi in {x ∈ Ω : u(x) > 0}

0 in {x ∈ Ω : u(x) ≤ 0} ,

(2.4)

and

(u−)xi =






−uxi in {x ∈ Ω : u(x) < 0}

0 in {x ∈ Ω : u(x) ≥ 0} .

(2.5)
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Gronwall’s Lemma

Lemma 2.2 Gronwall’s inequality (differential form).

Let η(t) be a nonnegative, absolutely continuous function on [0, T ], which sat-
isfies for a.e. t ∈ [0, T ] the differential inequality

η
�(t) ≤ φ(t)η(t) + ψ(t), (2.6)

where φ(t) and ψ(t) are nonnegative, summable functions on [0, T ].
Then

η(t) ≤ e

R t
0 φ(s)ds

�
η(0) +

�
t

0
ψ(s)ds

�
(2.7)

for all 0 ≤ t ≤ T .
In particular, if ψ(t) ≡ 0 in (2.6), i.e. η

� ≤ φ η for a.e. t ∈ [0, T ], and η(0) = 0,

then
η ≡ 0 in [0, T ].

Well-posedness in weighted Sobolev spaces

In order to deal with the well-posedness of problem (1.2), it is necessary to intro-
duce the following Sobolev weighted spaces

H
1
a
(−1, 1) :=

:= {u ∈ L
2(−1, 1) : u locally absolutely continuous in (−1, 1),

√
aux ∈ L

2(−1, 1)}

and
H

2
a
(−1, 1) := {u ∈ H

1
a
(−1, 1)| aux ∈ H

1(−1, 1)} =

= {u ∈ L
2(−1, 1)|u locally absolutely continuous in (−1, 1),

au ∈ H
1
0 (−1, 1), aux ∈ H

1(−1, 1) and (a ux)(±1) = 0}

respectively with the following norms

�u�2
H1

a
:= �u�2

L2(−1,1) + |u|21,a
and �u�2

H2
a

:= �u�2
H1

a
+ �(aux)�2

L2(0,1);

where |u|1,a = �
√

aux�L2(−1,1) is a seminorm.

In this note we obtain the following result.

Lemma 2.3

H
1
a
(−1, 1) �→ L

2(−1, 1) with compact embedding. (2.8)
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Proof:
Given u ∈ H

1
a
(−1, 1), let

ū(x) =






u if x ∈ [−1, 1]

0 elsewere .

It is sufficient to prove that, for every R > 0,

sup
�u�1,a≤R

�

R
|ū(x + h)− ū(x)|2 dx −→ 0, as h → 0 (2.9)

Let h > 0(1) and let u ∈ H
1
a
(−1, 1) be such that �u�1,a ≤ R, we have the following

equality�

R
|ū(x + h)− ū(x)|2 dx =

=
� −1

−1−h

|u(x + h)|2 dx +
� 1−h

−1
|u(x + h)− u(x)|2 dx +

� 1

1−h

|u(x)|2 dx =

=
� −1+h

−1
|u(x)|2 dx +

� 1−h

−1
|u(x + h)− u(x)|2 dx +

� 1

1−h

|u(x)|2 dx

First, let us prove that

sup
�u�1,a≤R

� 1−h

−1
|u(x + h)− u(x)|2 dx −→ 0, as h → 0+

. (2.10)

Recalling that A(x) =
�

x

0
ds

a(s) , we have

|u(x + h)− u(x)| ≤
�

x+h

x

�
a(s)|u�(s)| 1�

a(s)
ds ≤

≤
�� 1

−1
a(s)|u�(s)|2 ds

� 1
2

��
x+h

x

ds

a(s)

� 1
2

= |u|1,a [A(x + h)−A(x)]
1
2 .

By integrating on [−1, 1−h], since A ∈ L
1(−1, 1) (by assumption 3.b)), we obtain

� 1−h

−1
|u(x + h)− u(x)|2 dx ≤ |u|21,a

� 1−h

−1
(A(x + h)−A(x)) dx ≤

≤ R
2

�� 1

−1+h

A(x) dx −
� 1−h

−1
A(x) dx

�
=

1In the case h < 0 we proceed similarly.
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= R
2

�� 1

1−h

A(x) dx −
� −1+h

−1
A(x) dx

�
−→ 0, as h → 0+

.

Now, let us prove that

sup
�u�1,a≤R

� 1

1−h

|u(x)|2 dx −→ 0, as h → 0+
. (2.11)

We have
|u(0)| ≤ |u(x)|+

�
x

0

�
a(s)|u�(s)| 1�

a(s)
ds ≤

≤ |u(x)|+
�� 1

−1
a(s)|u�(s)|2 ds

� 1
2

��
x

0

ds

a(s)

� 1
2

≤ |u(x)|+ |u|1,a

�
A(x) .

By integrating on [0, 1], we obtain

|u(0)| ≤
� 1

0
|u(x)| dx + |u|1,a

� 1

0

�
A(x) dx ≤

≤ �u�L2(−1,1) + |u|1,a

� 1

0

�
A(x) dx ≤ C�u�1,a .

Then,
|u(0)| ≤ C R . (2.12)

Now, it follows that

|u(x)|2 ≤ 2|u(0)|2 + 2A(x)|u|21,a
≤ C R

2 + 2A(x)R2
.

Finally, since A ∈ L
1(−1, 1), by integrating on [1− h, 1] we obtain

� 1

1−h

|u(x)|2 dx ≤ C hR
2 + 2R

2

� 1

1−h

A(x) dx −→ 0, as h → 0+
.

Similarly, we can prove that

sup
�u�1,a≤R

� −1+h

−1
|u(x)|2 dx −→ 0, as h → 0+

. (2.13)

By (2.10), (2.11) and (2.13) we obtain (2.9).

We now recall the existence and uniqueness result for system (1.2) obtained in
[7] (see also [1]). Let us consider, first, the operator (A0, D(A0)) defined by






D(A0) = H
2
a
(−1, 1)

A0u = (aux)x , ∀u ∈ D(A0) .

(2.14)
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Observe that A0 is a closed, self-adjoint, dissipative operator with dense domain
in L

2(−1, 1). Therefore, A0 is the infinitesimal generator of a C0 − semigroup of
contractions in L

2(−1, 1).
Next, given α ∈ L

∞(−1, 1), let us introduce the operator





D(A) = D(A0)

A = A0 + αI .

(2.15)

For such an operator we have the following proposition.

Proposition 2.4

• D(A) is compactly embedded and dense in L
2(−1, 1).

• A : D(A) −→ L
2(−1, 1) is the infinitesimal generator of a strongly continu-

ous semigroup, e
tA, of bounded linear operator on L

2(−1, 1).

Observe that problem (1.2) can be recast in the Hilbert space L
2(−1, 1) as






u
�(t) = A u(t) , t > 0

u(0) = u0 .

(2.16)

where A is the operator in (2.15).

We recall that a weak solution of (2.16) is a function u ∈ C
0([0, T ];L2(−1, 1))

such that for every v ∈ D(A∗) the function �u(t), v� is absolutely continuous on
[0, T ] and

d

dt
�u(t), v� = �u(t), A∗v� ,

for almost t ∈ [0, T ] (see [2]).

Theorem 2.5

For every α ∈ L
∞((0, T ) × (−1, 1)) and every u0 ∈ L

2(−1, 1), there exists a
unique

u ∈ C
0([0, T ];L2(−1, 1)) ∩ L

2(0, T ;H1
a
(−1, 1))

weak solution to (1.2), which coincides with e
tA

u0.

In the space

B(0, T ) = C
0([0, T ];L2(−1, 1)) ∩ L

2(0, T ;H1
a
(−1, 1))
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let us define the following norm

�u�2B(0,T ) = sup
t∈[0,T ]

�u(t, ·)�2
L2(−1,1) + 2

�
T

0

� 1

−1
a(x)u2

x
dx , ∀u ∈ B(0, T ) . (2.17)

3 Some auxiliary lemmas and the proofs of main
results

Let A = A0 + αI, where the operator A0 is defined in (2.14) and α ∈ L
∞(−1, 1).

Since A is self-adjoint and D(A) �→ L
2(−1, 1) is compact (see Proposition 2.4),

we have the following (see also [4]).

Lemma 3.1

There exists a increasing sequence {λk}k∈N, λk −→ +∞ as k →∞ , such that
the eigenvalues of A are given by {−λk}k∈N, and the corresponding eigenfunctions
{ωk}k∈N form a complete orthonormal system in L

2(−1, 1).

In this note we obtain the following result

Lemma 3.2

Let v ∈ C
∞([−1, 1]), v > 0 on [−1, 1], let α∗(x) = − (a(x)vx(x))x

v(x) , x ∈ (−1, 1).
Let A be the operator defined in (2.15) with α = α∗






D(A) = H
2
a
(−1, 1)

A = A0 + α∗I ,

(3.18)

and let {λk}, {ωk} be the eigenvalues and eigenfunctions of A, respectively, given
by Lemma 3.1. Then

λ1 = 0 and |ω1| =
v

�v� .

Moreover, v

�v� and − v

�v� are the only eigenfunctions of A with norm 1 that do not
change sign in (−1, 1).

Remark Problem (3.18) is equivalent to the following differential problem





(a(x)ωx)x + α∗(x)ω + λ ω = 0 in (−1, 1)

a(x)ωx(x)|x=±1 = 0 .

(3.19)
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Proof: (of Lemma 3.2)
STEP.1 We denote by

{−λk}k∈N and {ωk}k∈N,

respectively, the eigenvalues and orthonormal eigenfunctions of the operator (3.18)
(see Lemma 3.1). Therefore,

�ωk, ωh�L2(−1,1) =
� 1

−1
ωk(x)ωh(x)dx = 0, if h �= k . (3.20)

We can see, by easy calculations, that an eigenfunction of the operator defined in
(3.18) is the function

v(x)
�v� ,

associated with the eigenvalue λ = 0. Taking into account the above and consid-
ering that v(x) > 0, ∀x ∈ (−1, 1)

∃ k∗ ∈ N : ωk∗(x) =
v(x)
�v� > 0 or ωk∗(x) = −v(x)

�v� < 0, ∀x ∈ (−1, 1) . (3.21)

Writing (3.20) with k = k∗ we obtain

�ωk∗ , ωh�L2(−1,1) =
� 1

−1
ωk∗(x)ωh(x)dx = 0, ∀h �= k∗ . (3.22)

Therefore, considering (3.22) and keeping in mind that ωk∗ > 0 or ωk∗ < 0 in
(−1, 1), we observe that ωk∗ is the only eigenfunction of the operator defined in
(3.18) that doesn’t change sign in (−1, 1).

STEP.2 Let us now prove that
k∗ = 1 , (3.23)

that is, λ1 = 0. By a well-known variational characterization of the first eigenvalue,
we have

λ1 = inf
u∈H1

a(−1,1)

� 1
−1

�
a u

2
x
− α∗ u

2
�

dx

� 1
−1 u2 dx

.

By Lemma 3.1, since λk∗ = 0, it is sufficient to prove that λ1 ≥ 0, or
� 1

−1
α∗ u

2
dx ≤

� 1

−1
a u

2
x

dx, ∀u ∈ H
1
a
(−1, 1) (3.24)

Integrating by parts, we have
� 1

−1
α∗ u

2
dx = −

� 1

−1

(a vx)x

v
u

2
dx =

� 1

−1
a vx

�
u

2

v

�

x

dx =
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=
� 1

−1
a vx

2uux

v
dx−

� 1

−1
a v

2
x

�
u

2

v2

�
dx =

= 2
� 1

−1

√
a

vx

v
u
√

aux dx−
� 1

−1
a v

2
x

�
u

2

v2

�
dx ≤

≤
� 1

−1
a

�
vxu

v

�2
dx +

� 1

−1
au

2
x

dx−
� 1

−1
a v

2
x

�
u

2

v2

�
dx =

� 1

−1
au

2
x

dx ,

from which (3.24).

For the proof of Theorem 1.3 the following Lemma is necessary.

Lemma 3.4

Let T > 0, α ∈ L
∞(QT ), let v0 ∈ L

2(−1, 1), v0(x) ≥ 0 a.e. x ∈ (−1, 1) and
let v ∈ B(0, T ) be the solution to the linear system






vt − (a(x)vx)x = α(t, x)v in QT = (0, T )× (−1, 1)

a(x)vx(t, x)|x=±1 = 0 t ∈ (0, T )

v(0, x) = v0(x) x ∈ (−1, 1) .

Then

v(t, x) ≥ 0, ∀(t, x) ∈ QT .

Proof: Let v ∈ B(0, T ) be the solution to the system (1.2), and we consider the
positive-part and the negative-part. It is sufficient to prove that

v
−(t, x) ≡ 0 in QT .

Multiplying both members equation of the problem (1.2) by v
− and integrating it

on (−1, 1) we obtain
� 1

−1

�
vtv

− − (a(x)vx)xv
− − αvv

−�
dx = 0. (3.25)

Recalling the definition v
+ and v

−, we obtain
� 1

−1
vtv

−
dx =

� 1

−1
(v+ − v

−)tv
−

dx = −
� 1

−1
(v−)tv

−
dx = −1

2
d

dt

�
(v−)2dx .

Integrating by parts and applying Theorem 2.1, we obtain v
− ∈ H

1
a
(−1, 1) and

the following equality
� 1

−1
(a(x)vx)xv

−
dx = [a(x)vxv

−]1−1 −
� 1

−1
a(x)vx(−v)x dx =

� 1

−1
a(x)v2

x
dx .
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We also have � 1

−1
αvv

−
dx = −

� 1

−1
α(v−)2dx

and therefore (3.25) becomes

−1
2

d

dt

� 1

−1
(v−)2dx +

� 1

−1
α(v−)2dx =

� 1

−1
a(x)v2

x
≥ 0,

from which

d

dt

� 1

−1
(v−)2dx ≤ 2

� 1

−1
α(v−)2dx ≤ 2�α�∞

� 1

−1
(v−)2dx.

From the above inequality, applying Gronwall’s lemma we obtain
� 1

−1
(v−(t, x))2dx ≤ e

2t�α�∞
� 1

−1
(v−(0, x))2dx .

Since
v(0, x) = v0(x) ≥ 0 ,

we have
v
−(0, x) = 0.

Therefore,
v
−(t, x) = 0, ∀(t, x) ∈ QT .

From this, as we mentioned initially, it follows that

v(t, x) = v
+(t, x) ≥ 0 ∀(t, x) ∈ QT .

We are now ready to prove our main result.

Proof: (of Theorem 1.3)

STEP.1 To prove Theorem 1.3 it is sufficient to consider the set of target states

vd ∈ C
∞([−1, 1]), vd > 0 on [−1, 1]. (3.26)

Indeed, regularizing by convolution, every function vd ∈ L
2(−1, 1), vd ≥ 0 can be

approximated by a sequence of strictly positive C
∞([−1, 1])− functions.

STEP.2 Taking any nonzero, nonnegative initial state v0 ∈ L
2(−1, 1) and any

target state vd as described in (3.26) in STEP.1, let us set

α∗(x) = − (a(x)vdx(x))x

vd(x)
, x ∈ (−1, 1). (3.27)
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Then, by (3.26),
α∗(x) ∈ L

∞(−1, 1) .

We denote by

{−λk}k∈N and {ωk}k∈N,

respectively, the eigenvalues and orthonormal eigenfunctions2 of the spectral prob-
lem Aω + λω = 0, with A = A0 + α∗I (see Lemma 3.1).

We can see, by Lemma 3.2, that

λ1 = 0 and ω1(x) =
vd(x)
�vd�

> 0, ∀x ∈ (−1, 1) . (3.28)

STEP.3 Let us now choose the following static bilinear control

α(x) = α∗(x) + β, ∀x ∈ (−1, 1), with β ∈ R (β to be determined below).

The corresponding solution of (1.2), for this particular bilinear coefficient α, has
the following Fourier series representation (3)

v(t, x) =
∞�

k=1

e
(−λk+β)t

� � 1

−1
v0(s)ωk(s)ds

�
ωk(x) =

= e
βt

� � 1

−1
v0(s)ω1(s)ds

�
ω1(x) +

�

k>1

e
(−λk+β)t

� � 1

−1
v0(s)ωk(s)ds

�
ωk(x)

Let

r(t, x) =
�

k>1

e
(−λk+β)t

� � 1

−1
v0(s)ωk(s)ds

�
ωk(x)

where, recalling that λk < λk+1, we obtain

−λk < −λ1 = 0 for ever k ∈ N, k > 1 .

Owing to (3.28),

�v(t, ·)− vd� ≤
����e

βt

� � 1

−1
v0(s)ω1(s)ds

�
ω1 − �vd�ω1

����+ �r(t, x)�=

=
����e

βt

� � 1

−1
v0(x)ω1(x)dx

�
− �vd�

���� + �r(t, x)�

2As first eigenfunction we take the one which is positive in (−1, 1).
3Observe that adding β ∈ R in the coefficient α∗ there is a shift of the eigenvalues correspond-

ing to α∗ from {−λk}k∈N to {−λk + β}k∈N, but the eigenfunctions remain the same for α∗ and

α∗ + β.
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Since v0 ∈ L
2(−1, 1), v0 ≥ 0 and v0 �≡ 0 in (−1, 1) and by (3.28), we obtain

� 1

−1
v0(x)ω1(x)dx > 0. (3.29)

Then, it is possible choose β and T > 0 so that

e
βT

� 1

−1
v0ω1dx = �vd�,

that is,

β =
1
T

ln
�

�vd�� 1
−1 v0ω1dx

�
. (3.30)

Since −λk < −λ2, ∀k > 2, applying Parseval’s equality we have

�r(t, x)�2 ≤ e
2(−λ2+β)t

�

k>1

����
� 1

−1
v0ωkds

����
2

�ωk(x)�2 =

= e
2(−λ2+β)t

�

k>1

�v0, ωk�2 = e
2(−λ2+β)t�v0�2.

So, by (3.30), the last inequality, and the above estimate for �v(T, ·) − vd(·)� we
conclude that

�v(T, ·)− vd(·)� ≤ e
(−λ2+β)T �v0� = e

−λ2T
�vd�� 1

−1 v0ω1dx

�v0�
T−→∞−→ 0 .

From which we have the conclusion.

Proof: (of Theorem 1.4)
The proof of Theorem 1.3 can be adapted to Theorem 1.4, keeping in mind that,
in STEP.3, inequality (3.29) continues to hold in this new setting. In fact we have

� 1

−1
v0(x)ω1(x)dx =

� 1

−1
v0(x)

vd(x)
�vd�

dx =

=
1

�vd�

� 1

−1
v0vddx > 0, by assumptions (1.3).

From this point on, one can proceed as in the proof of Theorem 1.3.
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