ANALISI MATEMATICA II (Ingegneria Energetica) PROVA DI AUTOVALUTAZIONE (02.05.2014) A.A.2013/14

COGNOME E NOME	N.Ro MATR
LUOGO E DATA DI NASCITA	

MOTIVARE CHIARAMENTE TUTTE LE RISPOSTE

Tempo 2 ore

- 1) Data la la forma differenziale $\omega = (xy 1) dx + x^2 dy$ determinare l'integrale generale (in forma implicita) dell'equazione differenziale ottenuta da $\omega = 0$. Individuare, quindi, la soluzione passante punto $P \equiv (e, 1)$, precisando per quali $x \in \mathbb{R}$ la funzione può essere scritta in forma esplicita del tipo y = y(x) di classe C^1 .
- 2) Detto D il **dominio regolare** di \mathbb{R}^2 definito da

$$D = \{(x,y) \in \mathbb{R}^2 | \sqrt{x} + \sqrt{y} \ge 1, \ x + y \le 1 \} :$$

a) calcolare l'area di D cioè

$$\mathbf{I} = \iint_D 1 \ dx dy \ ;$$

- b) Verificare il risultato ottenuto mediante l'applicazione delle formule di Green, calcolare, cioè **I** mediante un opportuno integrale esteso ad una opportuna curva generalmente regolare (quale?). Parametrizzare tale curva e calcolare **I**.
- 3) Rappresentare in serie di Fourier, la funzione $f : \mathbb{R} \to \mathbb{R}$, periodica, di *periodo* $T = 2\pi$, individuata in $[-\pi, \pi)$ da:

$$f(x) = \begin{cases} 0 & x \in (-\pi/2, \pi/2), \\ x^2 - \pi^2/4 & x \in [-\pi, -\pi/2] \cup [\pi/2, \pi). \end{cases}$$
 (0.1)

Precisare, $\forall x \in [-\pi, \pi]$ il valore della somma di tale serie di Fourier. In tale intervallo la convergenza è uniforme? E in \mathbb{R} ? Perchè? Fornire adeguate motivazioni.

- 4) Data la funzione reale di 2 variabili $f: E \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$, definita da $f(x,y):=y^4-x^4-x^2+y^2+1$
 - a) determinarne l'insieme $E \subset \mathbb{R}^2$ di definizione ed i punti di stazionarietà in E;
 - b) dato il compatto $D = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 4\}$, determinare $f(D) \subset \mathbb{R}$;
 - c) riconoscere che f(D) = [m, M] dove, rispettivamente, m ed M indicano il minimo ed il massimo valore assunto da f in D.