ANALISI MATEMATICA II (Ing. Energetica) II APPELLO STRAORDINARIO 29.10.2014 A.A.2013/14

COGNOME E NOME
MOTIVARE CHIARAMENTE TUTTE LE RISPOSTE Tempo 2 ore 30 '
1) Sia $\Omega \subset \mathbb{R}^3$ l'insieme delimitato dalla sfera centrata nell'origine di raggio 1 dall'alto, dal paraboloide di equazione $z = x^2 + y^2 - 1$ dal basso.
Parametrizzare $\partial\Omega$ e scriverne (dove possibile) versore normale uscente e piano tangente.
Scrivere in particolare versore normale uscente e piano tangente nei punti $P = \left(\frac{3}{4}, \frac{\sqrt{3}}{4}, \frac{1}{2}\right), \ Q = \left(\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4}, -\frac{3}{4}\right).$
Calcolare il flusso del campo $F(x, y, z) = (x^2, y^2, e^z)$ uscente dal bordo di Ω , svolgendo sia un integrale triplo che un integrale di superficie.
(8 punti)
2) Data la funzione $f(x,y) = x^2 \sin y + x$, studiare i punti critici di f e trovarne massimo e minimo globale, o eventualmente estremo superiore ed inferiore, nel suo dominio e nel rettangolo chiuso R di vertici $(1, \pi/2), (-1, \pi/2), (-1, -\pi/2)$ e $(1, -\pi/2)$.
(8 punti)
3) Dato D il compatto di \mathbb{R}^2 definito da $\{D = (x, y) \in \mathbb{R}^2 1 \le x^2 + y^2 \le 4, y \ge x \}$,
1. parametrizzare $D \subset \mathbb{R}^2$;
2. parametrizzarne la frontiera ∂D ;
3. data $\omega = 4xy^2dx + \alpha x^2ydy$, $\alpha \in \mathbb{R}$, determinarne l'insieme di definizione $E \subset \mathbb{R}^2$; 4. determinare $\alpha \in \mathbb{R}$, se esiste, tale che essa sia chiusa in E ; in corrispondenza al valore di α determinato, calcolare,
4. determinate $\alpha \in \mathbb{R}^{+}$, se esiste, tale the essa sia chiusa in E , in corrispondenza ai valore di α determinato, carcolare, $I_{1} = \int_{\mathbb{R}^{2}} \omega$, $I_{2} = \int_{\mathbb{R}^{2}} \omega$, dove $\gamma \subset \partial D$ congiunge il punto $A \equiv (\sqrt{2}/2, \sqrt{2}/2)$ con il punto $B \equiv (\sqrt{2}, \sqrt{2})$;
 5. verificare I₁ calcolando un opportuno integrale doppio esteso al compatto D; 6. indicare un sottoinsieme di E nel quale ω è esatta e dire se ω è esatta o meno in tutto E. In caso affermativo,
determinare $F(x,y)$ primitiva di ω ;
7. Se possibile verificare il risultato ottenuto calcolando, in modo diverso, l'integrale I_2 .
(8 punti)
4) Data in \mathbb{R} la funzione 2π -periodica individuata in $[0,2\pi]$ da:
$f(x) = \begin{cases} \pi - 2x & x \in [0, \pi], \\ 2x - 3\pi & x \in (\pi, 2\pi), \end{cases}$
si determini la serie di Fourier ad essa associata, precisando $\forall x \in [0, 2\pi]$ il valore della somma di tale serie. In tale intervallo la convergenza è uniforme? E in \mathbb{R} ? Perchè? Fornire adeguate motivazioni.
(8 punti)
Dichiaro di avere superato l'esame di Analisi Matematica I SI NO FIRMA
Riservato alla Commissione di Esame
SCRITTO
ORALE