ANALISI MATEMATICA II A. A. 2009/10 -Ing. Clinica

1 Data in \mathbb{R} la funzione generalmente continua e 2π -periodica, individuata in $(-\pi, \pi)$ da:

$$f(x) = \begin{cases} \pi & , & x \in (-\pi, 0), \\ \pi - 2x, & x \in [0, \pi), \end{cases}$$

si determini la serie di Fourier ad essa associata, precisando $\forall x \in [-\pi, \pi]$ il valore della somma della serie stessa.

2 Data in \mathbb{R} la funzione 2π -periodica, dispari, individuata in $[0,\pi]$ da:

$$f(x) = \begin{cases} 2x & x \in [0, \frac{\pi}{4}), \\ \frac{2}{3}(\pi - x) & x \in [\frac{\pi}{4}, \pi], \end{cases}$$

si determini la serie di Fourier ad essa associata, precisando $\forall x \in [-\pi, \pi]$ il valore della somma di tale serie. In tale intervallo la convergenza è uniforme? Dare adeguate motivazioni.

- 3 Determinare lo sviluppo in serie di Fourier della funzione 2π -periodica che vale x^2 nell'intervallo $[0, 2\pi)$, precisando $\forall x \in [0, 2\pi]$ il valore della somma della serie stessa.
- 4 Determinare lo sviluppo in serie di Fourier della funzione 2π -periodica che vale x^2 nell'intervallo $[-2\pi,0)$, precisando poi in $[-2\pi,0]$ il valore della somma della serie stessa.
- 5 Data la funzione $f(x), 2\pi$ -periodica, pari individuata in $[0, \pi]$ da:

$$f(x) = \begin{cases} 1 & x \in [0, \frac{\pi}{4}], \\ 0 & x \in (\frac{\pi}{4}, \frac{3}{4}\pi), \\ 1 & x \in [\frac{3}{4}\pi, \pi], \end{cases}$$

determinarne la serie di Fourier, precisando $\forall x \in [-\pi, \pi]$ il valore della somma della predetta serie. (Si può osservare che la funzione 2π -periodica è anche π -periodica).