ANALISI MATEMATICA II (Ingegneria Clinica) APPELLO STRAORDINARIO A.A.2009/10 11.11.2010

APPELLO STRAORDINARIO A.A.2009/10 11.11.2010
COGNOME E NOME
MOTIVARE CHIARAMENTE TUTTE LE RISPOSTE Tempo 3 ore
1) Detto D il dominio regolare di \mathbb{R}^2 definito da
$\left\{D=(x,y)\in\mathbb{R}^{2} 1\leq x^2+y^2\leq 9, x\geq 0, y\leq x\right\}\;,\;\; calcolare\;\; I=\iint_{D}xydxdy\;\;,$
Indicata, poi, con $+\partial D$ la frontiera del dominio D percorsa in verso antiorario (positivo), verificare il risultato ottenuto mediante l'applicazione delle formule di Green. Calcolare, cioè I mediante un opportuno integrale esteso alla frontiera (∂D) del dominio D .
2) Data in \mathbb{R} la funzione 2π -periodica, individuata in $(-\pi, \pi]$ da:
$f(x) = e^{- x } \tag{0.1}$
si determini la serie di Fourier ad essa associata, precisando $\forall x \in [-\pi, \pi]$ il valore della somma di tale serie. In tale intervallo la convergenza è uniforme? E in \mathbb{R} ? Perchè? Fornire adeguate motivazioni.
3) Data la funzione di variabile complessa $f:E\subset\mathbb{C}^{}\to\mathbb{C}^{}$:
Determinarne: $f(z) = \log(1+z^2) + \frac{1}{z^2 - 4i}$
 a) l'insieme E ⊂ C di definizione ed il campo A ⊂ C di olomorfia; b) lo sviluppo in serie di Taylor di punto iniziale z₀ = 0 con la relativa regione di convergenza; d) lo sviluppo in serie di Laurent di punto iniziale z₀ = z₁, dove z₁ indica una singolarità di tipo polo ammessa da f(x) indicando la relativa regione di convergenza.
Dichiaro di avere superato con esito positivo l'esame di ANALISI MATEMATICA I (verbalizzato in data) FIRMA
Riservato alla Commissione di Esame
SCRITTO
ORALE _