
A SHORT INTRODUCTION TO FRACTIONAL CALCULUS

RAUL DE MAIO

0.1. Introduction. In this notes, we will give a brief introduction to fractional calculus. In the
last years, this subject has been studied in two different ways, though close. The first approach is
probabilistic and we think it is the first step a mathematician has to do to build and investigate
some model. There are several works which follows this approach; in particular we suggest the
papers by F. Mainardi and papers and books by M.M. Meerschaert (see [1, 3]).
Their work is an overview about fractional differential models and we recommend it as a first step
to understand the differences with “classical” models.
The second approach is analytical and it is the one chosen in the following. There are some reasons
for this choice; fractional derivatives are interesting objects but not so easy to handle, then we
decided to write this informal notes as an exercise to get more familiar with them. For this reasons,
we will often stress the differences with the classical derivative and we will point out details that
we find interesting from my point of view and research. On the other hand, these pages are a
result for one of the courses I’ve attended during my Ph.D.
Moreover, we suggest the book “Fractional Differential Equations”(1999) by I. Podlubny, which
is the main reference we’ve followed.

1. Fractional derivatives

Let’s introduce the main objects of these notes. The plural in the title of this section is due
to the presence of several definitions of fractional derivative. In the following, we start with the
Grunwald-Letnikov’s one to move then to the Riemann-Liouville’s and the Caputo’s ones, which
will be discussed in details in the following.
In classical analysis, it is well known that applying the definition of first order derivative we obtain
the formula for the derivative of order p ∈ N as

(1.1) {?} f (p)(t) = lim
h→0

1

hp

n∑
r=0

(−1)r
(
p
r

)
f(t− rh),

where n ≥ p.
We can also consider negatives values of p. Indeed, for p ∈ N, we define(

−p
r

)
= (−1)r

(
p
r

)
;

then, replacing in the previous equation, we get

(1.2) {?} f (−p)(t) = lim
h→0

1

hp

n∑
r=0

(
p
r

)
f(t− rh).

Let a ∈ R be a point and define h = t−a
n . Then, substituting h and taking the limit for n→ +∞,

we define the limit value

(1.3) {?} aD
p
t f(t) := lim

n→+∞

(
n

t− a

)p n∑
r=0

(
p
r

)
f(t− r t− a

n
),

which can be easily extended to any value of p ∈ R.
This formula gives the definition of Grunwald-Letnikov derivative, but it is not the easieast to use
formula to work with fractional derivative.
A first semplification comes from the Riemann-Liouville fractional derivative. Assume that the
function f is m + 1−differentiable in a closed interval [a, t] ⊂ R, where m ∈ N such that p ∈
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(m,m+ 1]. Then, under these assumptions, we can write the Taylor series, with Lagrange term,
for f and get

(1.4) {?}

Dp
a,tf(t) =

m∑
k=0

f (k)(t− a)k−p

Γ(1 + k − p)
+

1

Γ(1 +m− p)

∫ t

a

(t− s)m−pf (m+1)(s)ds

=
1

m+ 1− p

(
d

dt

)m+1 ∫ t

a

(t− s)m−pf(s)ds =a D
p,RL
t f(t).

The last expression is it the most known definition of fractional derivative, denoted with Dp,RL

usually called Riemann-Liouville derivative.
Observe that the two definitions coincide only if the function f is m+ 1-differentiable.

From the same formula, we can define the Caputo derivative aD
p,C
t = Dp,C

(1.5) {?} Dp,Cf(t) =
1

Γ(1 +m− p)

∫ t

a

(t− s)m−pf (m+1)(s)ds.

Then, fixed m ∈ N, a ∈ R, for t ≥ a, we have for p ∈ (m− 1,m] the following derivatives:

(1.6) RLdev Dp,RLf(t) =
1

Γ(1 +m− p)

(
d

dt

)m ∫ t

a

(t− s)m−1−pf(s)ds,

the Caputo derivative

(1.7) ?Cdev? Dp,Cf(t) =
1

Γ(m− p)

∫ t

a

(t− s)m−1−pf (m)(s)ds;

connected together by the formula

(1.8) change_formula Dp,RLf(t) =

m−1∑
k=0

f (k)(a)(t− a)k−p

Γ(1 + k − p)
+Dp,Cf(t).

The last formula is fundamental. It links the two derivatives and highlights the first differences
between the derivatives. Indeed, it is easy to see that the two differential operators have different
domain, since the Caputo derivative requires the m−differentiability for the function, while the
Riemann-Lioville’s requires the integrability of the functions.
Another important difference between the two derivatives is given by the fractional derivative of
a constant. Let f = C > 0, then the Caputo derivative is clearly 0 as in the classical case.
On the other hand, formula (1.8) shows that

Dp,RLC = C
(t− a)−p

Γ(1− p)
.

we remark that we am assuming that t ≥ a; however it is possible to generalise the previous
definitions also for t ≤ a. In the following, we always assume the first case and for this reason we
omit a and t in our notation.

1.1. The Riemann-Liouville integral. In the previous section, we started from the classical
notion of derivative of natural order to define the fractional one. We have seen that there is not
a unique way. In this section, we stress this lack of “uniqueness” and highlight the fractional
derivative as integro-differential operators.

Define the Riemann-Liouville integral as

(1.9) ?Ialpha? Iαf(t) =
1

Γ(α)

∫ t

a

f(s)(t− s)α−1dt,

where Γ is the Gamma function, a a fixed point and α a positive constant.
Clearly, if α = 1, I1 is the Lebesgue integral.
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Fixed a bounded interval (a, b) ⊂ R, Iα is a linear operator over L1(a, b). Moreover, thanks to
Fubini’s theorem, this operator is also continuous on L1 and it holds

‖Iαf‖1 ≤
|b− a|α

α|Γ(α)|
‖f‖1.

Futhermore, we have that, for α→ 0, Iαf → f in L1,i.e.

lim
α→0+

‖Iαf − f‖1 = 0.

Once this integral is defined, it is easy to observe that, if α ∈ (m,m+ 1] for m ∈ N, then

Dα,RLf(t) =
dm+1

dtm+1

(
Im+1−αf

)
(t),

and

Dα,Cf(t) = Im+1−α
(
dm+1f

dtm+1

)
(t).

1.2. Behaviour near the lower terminal. A first question would be the behaviour of the
Riemann Liouville derivative for t→ a+.
Assume that f is analytic, at least, in the interval [a, a+ ε] for some small ε > 0.
Then, we can represent it by the Taylor series

(1.10) {?} f(t) =

∞∑
k=0

f (k)(a)

k!
(t− a)k.

By linearity we get

(1.11) {?} Dp
t f(t) =

∞∑
k=0

f (k)(a)

Γ(k − p+ 1)
(t− a)k−p;

it follows that if f is analytic then, for t→ a+, Dp
t f(t) has the same behaviour of

(1.12) {?}
f(a)

Γ(1− p)
(t− a)−p

and

(1.13) {?} lim
t→a+

Dp
t f(t) =

 0, p < 0,
f(a), p = 0,
+∞, p > 0.

Assume now that f(t) has an integrable singularity at t = a, then we can write it as f(t) =
(t− a)qg(t), where g(a) 6= 0 and q ∈ (−1, 0). Suppose that g can be represented by a Taylor series
as before, hence

(1.14) {?} f(t) =

∞∑
k=0

g(k)(a)

k!
(t− a)k+q;

applying the Riemann-Liouville fractional derivative, we obtain

(1.15) {?} Dp
t f(t) =

∞∑
k=0

g(k)(a)

k!

Γ(q + k + 1)

Γ(q + k + 1− p)
(t− a)q+k−p

from which follows that, for t→ a+, behaves as

(1.16) {?} g(a)
Γ(q + 1)

Γ(q − p+ 1)
(t− a)q−p,

and

(1.17) {?} lim
t→a+

Dp
t f(t) =


0, p < q

g(a) Γ(q+1)
Γ(q−p+1) , p = q,

+∞, p > q.
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1.3. Behaviour far from the Lower Terminal. we want know to answer to a question similar
to the previous one and understand what happens far from the lower terminal a.
Let f be analytic, then, applying the Grunwald-Letnikov definition, we get

Dp
t f(t) =

p∑
k=0

(
p
k

)
(t− a)k−p

Γ(k − p+ 1)
f (k)(t).

Applying the definition of binomial coefficient an the reflection formula for the Γ function, we can
write

(1.18) {?} Dp
t f(t) =

Γ(p+ 1) sin(pπ)

π

∞∑
k=0

(−1)k(t− a)k−p

(p− k)k!
f (k)(t).

Assume that t is far from a, then

(t− a)k−p = tk−p
(

1− (k − p)a
t

+O

(
a2

t2

))
.

Therefore, Dp
t f(t) behaves as

Γ(p+ 1) sin(pπ)

π

{ ∞∑
k=0

(−1)ktk−p

(p− k)k!
f (k)(t) +

a

tp+1

∞∑
k=0

(−1)ktkf (k)(t)

k!

}
,

i.e., for large t it behaves as

Dp
0,tf(t) +

aΓ(p+ 1) sin(pπ)f(0)

πtp+1
.

The last expression is interesting because the impact of the initial instant a vanishes as t→∞.

2. Fractional differential equations

Once the fractional derivative is defined, it is natural to ask if it possible to solve a differential
equation which involves a fractional derivative.
In this section, I’ll expose the theory of fractional differential equations for the Riemann-Liouville
derivative. This choice is fundamental as we will see about the initial conditions, because the their
depends on the fractional derivative definition.
It is also possible to provide the same theory for the Caputo derivative thanks to formula (1.8).

Let αj ∈ (0, 1] for j = 1, . . . , n and define σk =
∑k
j=1 αj , for k = 1, . . . , n.

For T <∞, we want to study the linear problem

(2.1) fCauchy


Dσn
t y(t) +

∑n−1
j=1 pj(t)D

σn−j

t y(t) + pn(t)y(t) = f(t), t ∈ (0, T )[
Dσk−1y(t)

]
t=0

= bk, k = 1, . . . , n.

where
Dσk
t = Dαk

t . . . Dα1
t ,

Dσk−1
t = Dαk−1D

αk−1

t . . . Dα1
t ,

and f ∈ L1(0, T ).The definition of the operator Dσk and parameters αj is necessary because the
fractional derivative are not commutative.
We have the following theorems and we will omit the respective proofs:

〈thm1〉Theorem 2.1. If f ∈ L1(0, T ), then the equation

(2.2) {?} Dσn
t y(t) = f(t),

has the unique solution y ∈ L1(0, T ), which satisfies the initial conditions in (2.1), given by

(2.3) {?} y(t) =
1

Γ(σn)

∫ t

0

(t− s)σn−1f(s)ds+

n∑
i=1

bi
Γ(σi)

tσi−1.
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We propose some examples. Assume σn = α ∈ (0, 1] and f(t) ≡ 0. Then, the solution would be

y(t) =
bn

Γ(σn)
tα−1.

Apply formula (1.6), to verify that

0D
α
t y(t) =

d

dt
πcsc(απ) = 0.

Under the same hypothesis, if f(t) ≡ C ∈ R, then

y(t) = −tα C

Γ(α+ 1)
+

bn
Γ(α)

tα−1

From the previous theorem, it follows some results

Theorem 2.2. If f ∈ L1(0, T ), and pj , with (j = 1, . . . , n) are continuous functions in the closed
interval [0, T ], the initial-value problem (2.1) has a unique solution in L1(0, T ).

Theorem 2.3. If f and pj (j = 1, . . . , n) are continuous functions in the closed interval [0, T ],
then the initial value problem (2.1) has a unique solution y(t) which is continuous in [0, T ].

2.1. Fractional Differential Equation of a general form. Let us consider now the initial
value problem given by

(2.4) genfCauchy

{
Dσn
t y(t) = f(t, y), t ∈ (0, T )[
Dσk−1y(t)

]
t=0

= bk, k = 1, , n,

where where
Dσk
t = Dαk

t . . . Dα1
t ,

Dσk−1
t = Dαk−1D

αk−1

t . . . Dα1
t ,

for aj ∈ (0, 1] for j = 1, . . . , n and σk =
∑k
j=1 αj .

Suppose that f(t, y) is defined on a domain G of a plane (t, y) and define a regione R(h,K) ⊂ G,
whose points satisfy the following inequalities:

0 < t < h∣∣∣∣∣t1−σ1y −
n∑
i=1

bi
Γ(σi)

tσi−σ1

∣∣∣∣∣ ≤ K,
where h,K are constant.
Observe that, for n = 1 and σn = 1 we obtain the classical case and R(h,K) is a cylinder. In
the fractional case, this set is not easy to visualize. However, it is possible to give a qualitative
description.
Assume that y(t) ∈ R for all t ∈ (0, h). Then, the previous inequality can be rewritten as

−Ktσ1−1 +

n∑
i=1

bi
Γ(σi)

tσi−1 ≤ y ≤ Ktσ1−1 +

n∑
i=1

bi
Γ(σi)

tσi−1,

equivalent to

1

t

(
−Ktσ1 +

n∑
i=1

bi
Γ(σi)

tσi

)
≤ y ≤ 1

t

(
Ktσ1 +

n∑
i=1

bi
Γ(σi)

tσi

)
.

Then, the region R(h,K) is not bounded, since for small t > 0 the singular term 1
t wins over the

fractional polynomial.
We can finally give the following theorem

Theorem 2.4. Let f(t, y) be a real-valued continuous function, defined in the domain G, satisfying
in G the Lipschitz condition with respect to y such that f is bounded by M > 0 in G. Let also

K ≥ Mhσn−σ1+1

Γ(1 + σn)
.

Then there exists in the region R(h,K) a unique and continuous solution y(t) of problem (2.4).
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?〈21junc〉?

Figure 1. Example of R(h,K)

2.2. Understanding Fractional ODE. we want to conclude this notes with some exercises and
observation to help the reader to understand and think about fractional derivative in differential
equations.

In the last years, fractional calculus has been used to build differential models for thermodynam-
ics, viscoelasticity, earthquakes, diffusion in heterogenous and porous media and other interesting
application.
It is interesting that sometimes fractional ODEs fit experimental data better than classical ODEs.
The fractional ”behaviour comes into play when we calibrate also the derivation order through
data.
In this first example, we want to understand what happens to the easy classical ODE

ẏ = λy,

when we change the order of derivation to ε, closed to 1:

(2.5) {?} y(ε) = λy,

where λ ∈ R.
From Theorem (2.1) it seems that our solution takes the form

y(t) =
1

Γ(ε)

∫ t

0

λ(t− s)ε−1y(s)ds+
C

Γ(ε)
tε−1.

Then, substituting in the previous formula, we would get

y(t) =
C

Γ(ε)
tε−1 +

C

Γ(ε)2

∫ t

0

λ(t− s)ε−1sε−1ds+
1

Γ(ε)2

∫ t

0

λ2(t− s)ε−1

∫ s

0

(s− r)ε−1dr

=
C

Γ(ε)
tε−1 +

C

Γ(ε)2
t2ε−1λ

∫ 1

0

(1− z)ε−1zε−1dz +
1

Γ(ε)2

∫ t

0

λ2(t− s)ε−1

∫ s

0

(s− r)ε−1dr

=
C

Γ(ε)
tε−1 +

C

Γ(ε)2
t2ε−1λ

Γ(ε)2

Γ(2ε)
+

1

Γ(ε)2

∫ t

0

λ2(t− s)ε−1

∫ s

0

(s− r)ε−1dr.
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Then, applying iteratively, we get the following expression for y:

(2.6) {?} y(t) =
C

Γ(ε)
tε−1 +

∫ t

0

+∞∑
j=1

1

Γ(jε)
(t− s)jε−1λj

C

Γ(ε)
sε−1ds.

With some computation, we find out then that

y(t) = Ctε−1Eε,ε(λtε),
where Eα,β(z) is the Mittag Leffler function defined by

Eα,β(z) :=

+∞∑
n=0

zn

Γ(αn+ β)
.

Observe that for ε ∈ (0, 1), the function y(t) has a singularity at t = 0. Indeed, by the illustrated
theory, the solution to a fODE belongs to L1(0, T ) and it is not necessarily continuous.
For ε = 1, we formally have y(t) = y(t)ε=0 = CE1,1(λt).
It is possible to verify that y = y(·, ε)→ y for ε→ 1 respect to the L1 convergence.

We want to conclude this notes with an exercise to understand what happens when a fractional
derivative appears in an ordinary differential equation, i.e. which is the role of a small perturba-
tion given by a fractional derivative.
Consider the fODE

(2.7) disturb ẏ + εy(α) + y = 0,

where ε << 1 and α ∈ (0, 1).
The initial condition are given by y(0) = A and y(α−1)(0) = B, with A,B ∈ R.
Since this problem would seem similar to the Duffing’s oscillator, we try at first to look for a
solution to this problem with perturbative development: assume that

y =
∑
i≥0

εiyi(t),

and substitute it in (2.7); we get

(2.8) {?} y′0 + εy′1 + ε2y′2 + . . .+ εy
(α)
0 + ε2y

(α)
1 + . . .+ y0 + εy1 + ε2y2 + . . . = 0.

Dividing by the order of ε, we get

(2.9) {?}


ẏ0 + y0 = 0,

ẏn + yn = −y(α)
n−1, n ∈ N,

y(0) = A, y(α−1)(0) = B.

The solution to the first equation is clearly,

y0(t) = C0e
−t.

On the other hand, for n ∈ N, we get

yn(t) = e−t
[
Cn +

∫ t

0

esyn−1(s)ds

]
,

which means

y(t) =
∑
i≥0

εiyi(t)

= C0e
−t + e−t

∑
i≥1

εi
[∫ t

0

esy
(α)
i−1(s)ds+ Ci

]

y(t) =
∑
i≥0

εiCie
−t +

∫ t

0

es−t

∑
i≥1

εiy
(α)
i−1(s)

 ds.
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From the previous expression we can observe that

A = y(0) = C0 +
∑
i≥1

εiCi,

then it follows that C0 = A and Ci = 0 for all i ≥ 1. Then, we have

(2.10) {?} y(t) = Ae−t +
∑
i≥1

εi
∫ t

0

es−ty
(α)
i−1(s)ds.

We would need now to verify that y(α−1)(0) = B, but it is not easy to deal with this calculus. For
this reason, we will propose another method which is based on the Laplace transform.
Indeed, if we apply the Laplace transform on (2.7), we have

(2.11) {?} sY −A+ εsαY − εB + Y = 0,

where Y (s) is the Laplace transform of y. It follows then that

Y (s) = (A+ εB)
1

s+ εsα + 1
,

using the Taylor series for ε = 0 it is equal to

Y (s) = (A+ εB)

 1

1 + s

∑
n≥1

(−εsα)n

(1 + s)n+1

 .

Applying the inverse Laplace transform, we finally have the solution written as a series:

(2.12) {?} y(t) = (A+ εB)

e−t +
∑
n≥1

(−ε)n
(
t−αn−1

Γ(−αn)

)
?

(
e−ttn

Γ(n+ 1)

) ,

where ? is the convolution operator.
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