
Liquidi	Liquidi puri (proprietà)	Viscosità Energia superficiale Pressione di vapore Temperatura di fusione Temperatura di ebollizione
	soluzioni (proprietà)	Liquido + Liquido Liquido + Gas Liquido + Solido

Passaggio in soluzione acquosa di un solido ionico

Specie chimica	Grammi in 100g di acqua	Specie chimica	Grammi in 100g di acqua
AgI	3.1*10-7	CuSO ₄	20.5
$BaSO_4$	2.5*10-4	KNO ₃	31.6
PbSO ₄	4.0*10-3	NaCl	36.0
I_2	2.0*10-2	CuCl ₂	43.5
Ca(OH) ₂	1.7*10-1	ZnSO ₄	54.5
TlCl	0.35	CaBr ₂	143
$Na_2Ba_4O_7$	2.8	KI	144
$Na_2C_2O_4$	3.8	AgF	190
NaHCO ₃	9.6	NH ₄ NO ₃	191
K ₂ SO ₄	11.0	$AgNO_3$	222

Soluzione

soluto

Si definisce soluto il componente che nel passaggio in soluzione perde il suo stato di aggregazione.

Un sale che si scioglie in acqua, o un gas che si scioglie in un liquido

Solvente

Il **S** o l v e n t e è il componente che mantiene lo stato di aggregazione.

Per una miscela di due liquidi si indica come Solvente il liquido presente in quantità molare maggiore

SOLUZIONE (S)= soluto (s) + Solvente (S)

Concentrazioni delle soluzioni

Mescolamento di soluto + Solvente. Rapporto peso/peso

n° mol soluto V Solvente	n° mol soluto n° mol Solvente	n° mol soluto g Solvente	g soluto g Solvente
	Frazione molare (x) n_s^o	Molalità (m) $m = \frac{n_s^o}{n_s}$	Percento in peso (%) $g_s * 100$
	$\lambda_s = \frac{1}{n_s^o + n_S^o}$	$m_s = \frac{s}{1 kg(S)}$	$\%_s = \frac{g_s + g_S}{g_s + g_S}$

Mescolamento di soluto + Solvente. Rapporto peso/volume

n° mol soluto V Soluzione	g soluto V Soluzione	n° eq. soluto V Soluzione
Molarità (M)		Normalità (N)
$M = \frac{n_s^o}{1 litro (S)}$		$N = \frac{n^{o}eq.}{1 litro (S)}$

Per passare dalle unità di misura peso/peso alle unità di misura peso/volume è necessario conoscere la **densità della soluzione**.

$$m = \frac{M}{d - \frac{M\overline{PF}}{1000}}$$

Concentrazioni espresse in unità fisiche

% in peso

esprime la massa di soluto in grammi contenuta in 100 g di SOLUZIONE

 g_{soluto} : $g_{\text{SOLUZIONE}} = \%$: 100

$$% S_{soluto} = \frac{g_{soluto}}{g_{soluto} + g_{solvente}} \cdot 100$$

Esempio 1: Preparare una soluzione al 10% di Na₂SO₄ significa mescolare 10.0 g di Na₂SO₄ e 90.0 g di acqua

Esempio 2: Quanti grami di soluzione al 15% in peso di CuSO₄ si debbono prelevare per avere 8.2 g di CuSO₄?

$$15.0 \, g_{\text{soluto}} : 100 \, g_{\text{SOLUZIONE}} = 8.2 : t$$

t = 54.66 g di soluzione

Esempio 3: Preparare 50.0 g di una soluzione al 12% in peso di BaCl₂ partendo da un sale idrato di formula $BaCl_2 \cdot 2H_2O$ (questo vuol dire che nel sale è contenuta acqua con un rapporto costante di 2 mol di H_2O per ogni mole di $BaCl_2$) (MAR: Ba = 137.33; Cl = 35.45; H = 1.01; O = 16.00)

In 50.0 grammi di soluzione devono essere contenuti 6.00 grammi di BaCl₂ quindi:

$$208.23 : 244.23 = 6.0 : t$$
 $t = 7.04 g$ BaCl₂ BaCl₂ CH₂O

Si devono mescolare 7.04 g di BaCl₂·2H₂O e 42.96 g di acqua

% in Volume

Esprime il volume di soluto (ml) contenuto in 100 ml di SOLUZIONE

$$\%_{V/V} = \frac{V_{soluto}}{V_{SOLUZIONE}} \cdot 100$$

Questo modo di esprimere la concentrazione viene utilizzato quasi esclusivamente per le miscele gassose; si utilizza molto meno quando sia il soluto che il solvente sono entrambi liquidi.

Peso di soluto per Volume di SOLUZIONE

Esprime la massa di soluto (in grammi) in 100 ml di SOLUZIONE (o litro di SOLUZIONE)

$$g/ml = \frac{g_{soluto}}{V_{SOLUZIONE}(ml)} \qquad g/l = \frac{g_{soluto}}{V_{SOLUZIONE}(l)}$$

Frazione molare x

Usando questa unità di misura si può calcolare sia la fazione molare del soluto che quella del solvente

Frazione molare del soluto :
$$x_s = \frac{n_{soluto}^o}{n_{soluto}^o + n_{Solvente}^o}$$

Frazione molare del Solvente:
$$x_S = \frac{n_{Solvente}^o}{n_{soluto}^o + n_{Solvente}^o}$$

$$\sum_i x_i = 1$$

Esempio 1: Una soluzione è stata preparata sciogliendo 684.0 g di saccarosio (MF = 342) in 900.0 g di acqua. Determinare le frazioni molari dei componenti della soluzione e il % in peso.

$$n_{saccarosio}^{o} = \frac{684.0}{342} = 2.00$$
 $n_{H_2O}^{o} = \frac{900.0}{18} = 50.00$ $x_{saccarosio} = \frac{2.00}{52} = 0.038$ $x_{H_2O} = \frac{50.00}{52} = 0.962$

Per quanto riguarda la % in peso abbiamo: $\%_s = \frac{684.0}{(684.0 + 900.0)} \cdot 100$

La percentuale di saccarosio nella soluzione è del 43.18%

molalità

Esprime le moli di soluto contenute in 1 kg di *Solvente*

$$m_s = \frac{n_{soluto}^o}{1 \, kg(S)}$$

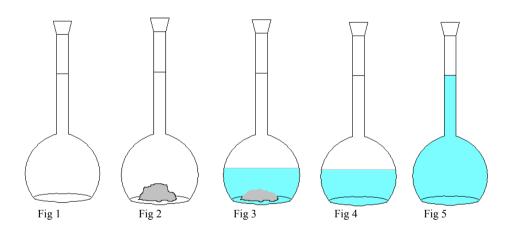
Esempio 1: Calcolare la molalità della soluzione sopra citata cioè quella ottenuta sciogliendo 684.0 g di saccarosio (MF = 342) in 900.0 g di acqua.

$$2.00 \text{ mol}_{s}$$
: $0.900 \text{ kg}_{Solvente} = m_{s}$: 1 kg

$$m_{\text{saccarosio}} = 2.2 \text{ molale}$$

Come abbiamo potuto osservare la conoscenza della massa di soluto e di solvente consente di calcolare molto semplicemente sia il % in peso che la frazione molare che la molalità.

Molarità


Esprime le moli di soluto contenute in 1 litro di SOLUZIONE

$$M_s = \frac{n_{soluto}^o}{1 \, lit.SOLUZIONE}$$

Per capire in cosa consiste la Molarità proviamo a preparare una soluzione a titolo noto espresso in Molarità.

Esempio 1:Preparare una soluzione 1.50 M di AgNO₃ (MF = 169.87)

Dobbiamo prendere 1.50 mol di AgNO₃ essendo $n_{mol}^o = \frac{g}{MF}$ 1.50 mol \equiv 254.805 g di AgNO₃.

In quanti ml di questa soluzione sono contenuti 30.0 g di AgNO₃?

$$\frac{30.0}{169.87} = 0.1766 \, mol$$
 quindi 1.5 mol : 1.0 lit = 0.1766 : x \rightarrow x = 0.1177 lit

Oppure: $254.805 \text{ g} : 1.0 \text{ lit} = 30.0 : x \rightarrow x = 0.1177 \text{ lit}$

Esercizio 1

Testo:

Una soluzione al 10% di $Ca(NO_3)_2$ (MF = 164.0) ha un peso specifico 1.1 g/ml. Calcolare la molalità e la Molarità.

Svolgimento:

Il peso specifico 1.1 g/ml significa che che un litro di soluzione pesa 1100 g. quindi una soluzione al 10% significa che: $10_g \left[\text{Ca(NO}_3)_2 \right] : 100 = \text{x} : 1100 \qquad \text{x} = 110_g \left[\text{Ca(NO}_3)_2 \right]$ Calcolo della molalità:

 $g di H_2O = 1100 - 110 = 990_g$

$$m = \frac{n_{soluto}^{o}}{1.0 \, kg_{Solvente}} = \frac{\frac{110.0}{164.0}}{0.990_{kg}} = 0.677 \, molale$$

Calcolo della Molarità:

I grammi di $Ca(NO_3)_2$ in 1 litro di soluzione (1100 g di SOLUZIONE) sono 110_g quindi le mol sono: 110/164 = 0.671 mol quindi la concentrazione della soluzione è 0.671 Molare

Esercizio 2

L'ammoniaca concentrata è una soluzione al 26 % di NH_3 la sua densità a 20 °C è di 0.904 g/ml, qual è la sua molarità? (MF $NH_3 = 17.0$)

Che vuol dire soluzione al 26 % in peso? Significa che in 100 grammi di soluzione ci sono 26.0 g di NH_3 (26 g di NH_3 + 74 g di H_2O)

Conoscendo la densità della soluzione (0.904 g/ml sappiamo che 1 lit di soluzione pesa 904g) possiamo scrivere la seguente proporzione:

$$26:100 = x:904 \longrightarrow x = 235 g$$

x sono i grammi di NH_3 contenuti in 1.0 lit di soluzione e questi sono corrispondenti a(235/17) = 13.82 mol.

Quindi la nostra soluzione ha una concentrazione di 13.82 Molare

Mescolamento Soluzione + Solvente (si ottengono soluzioni più diluite) DILUIZIONE

$$M_i V_i = M_f V_f$$

Mescolamento di due soluzioni dello stesso soluto

Si ottengono soluzioni a concentrazione intermedia tra le due.

$$\begin{cases} V_1 + V_2 = V_3 \\ M_1 V_1 + M_2 V_2 = M_3 V_3 \end{cases}$$

Esercizio 3

Preparare 120.0 ml di soluzone 0.37 M di AgNO₃ avendo a disposizione una soluzione 1.5 M di AgNO₃ ed acqua distillata.

Le moli che sono contenute in 120 ml di soluzione 0.37 M si ricavano facendo il prodotto della Concentrazione Molare per il volume espresso in litri, nel nostro caso abbiamo:

$$0.37 \cdot 0.120 = 4.44 \cdot 10^{-2} \text{ mol}$$

 $4.44 \cdot 10^{-2}$ moli di $AgNO_3$ devono essere prelevate dalla soluzione 1.5~M quindi:

$$1.5_{mol}$$
: $1_{lit} = 4.44 \cdot 10^{-2}$: $y = 0.0296$ lit

$$29.6 \text{ ml di } AgNO_3(1.5M) + 90.4 \text{ ml di } H_2O$$

Ovvero si poteva calcolare più semplicemente:

$$1.5M \cdot V_x = 0.37M \cdot 0.120$$

 $V_x = 0.0296 \ lit$

Esercizio 4

Testo:

Avendo a disposizione due soluzioni, di cui una di AgNO₃ 1.5 M e l'altra una soluzione dello stesso soluto ma con concentrazione 0.5 M. Calcolare i volumi delle due soluzioni da mescolare per preparare 200 ml di soluzione 1.3 M di AgNO₃.

Svolgimento:

Ricordiamo che le moli di AgNO₃ contenute in 200 ml di soluzione 1.3M sono:

$$1.3 \ M \cdot 0.200 \ lit = 0.260 \ mol$$

$$\begin{cases} V_1 + V_2 = 0.200 & V_1 = 0.160 \\ 1.5 \cdot V_1 + 0.5 \cdot V_2 = 0.260 & V_2 = 0.040 \end{cases}$$

La Normalità

Gli equivalenti
$$n_{eq}^o = \frac{g}{P_{eq}}$$
 $P_{eq} = massa equivalente$ H_2O Analisi chimica $2*1.008$ g di H si combinano con 16.00 g di OH 11.19 % 1.008 g di H si combinano con 8.00 g di OO 88.81 % CaO Ca 71.35 % 20.00 g di Ca si combinano con 16.00 g di OCa 71.35 % 20.00 g di Ca si combinano con 8.00 g di OO 28.65 % CaH_2
Siccome 2.016g di H reagisce con 16.00 g di O ed anche 40.00 g di Ca reagiscono con 16.00 g di O ed 2 * 1.008 g di H si combinano con 40.00 g di CaCa 95.30 %
H 4.70 %

HC1	Analisi chimica
	Н 2.70 %
1.008 g di H si combinano con 35.45 g di Cl	C1 97.30 %
Al_2O_3	
2*27.00 g di Al si combinano con 3*16.00 g di O	Al 52.90 %
54.00 g di Al si combinano con 48.00 g di O	O 47.10 %
9.00 g di Al si combinano con 8.00 g di O	
Al_xCl_v	
27.00 g di Al si combinano con 3 * 35.45 g di Cl	Al 22.40 %
27.00 g di Ai si combinano con 3 33.43 g di Ci	Cl 77.60 %

AlCl₃

Per le reazioni di formazione dei composti, in cui si combinano due elementi ci si affida ad un numero relativo che è il valore assoluto del numero di ossidazione dell'elemento considerato nel composto covalente o della sua valenza se è un composto ionico.

$$P_{eq} = \frac{\overline{MAR}}{|valenza|}$$
 oppure $P_{eq} = \frac{\overline{MAR}}{|n^{\circ} \ di \ ossidazione|}$

Siccome l'idrogeno nelle sue reazioni con altri elementi mette a comune comunque 1 elettrone (il n° di ossidazione dell'H è 1) i grammi corrispondenti al peso equivalente dell'idrogeno sono 1.008 g.

Qualche esempio

$$P_{eq}$$
 del Fe in FeO: n° di ossidazione del Fe +2 $P_{eq} = \frac{55.85}{2} = 27.925g$

$$P_{eq}$$
 del Fe in Fe₂O₃: n° di ossidazione del Fe +3 $P_{eq} = \frac{55.85}{3} = 18.617g$

$$P_{eq}$$
 del S in SO_2 : n° di ossidazione del S +4 $P_{eq} = \frac{32.06}{4} = 8.015g$

$$P_{eq}$$
 del S in SO₃: n° di ossidazione del S +6 $P_{eq} = \frac{32.06}{6} = 5.343g$

In tutti i composti il P_{eq} dell'ossigeno è 8.00g

Per gli idrossidi: Ossido del metallo $+ H_2O \rightarrow idrossido del metallo (ione idrossonio OH⁻)$

LiOH il Li⁺ sostituisce un idrogeno

 $P_{eq}(idrossido) = PF/1$

Ca(OH)₂ il Ca²⁺ sostituisce due idrogeni

 $P_{eq}(idrossido) = PF/2$

Fe(OH)₃ il Fe³⁺ sostituisce tre idrogeni

 $P_{eq}(idrossido) = PF/3$

Per gli ossiacidi: Anidride + H₂O → ossiacido

 $HClO H^{+}(ClO)^{-}$

 $HClO_2 H^+ (ClO_2)^-$

HClO₃ H⁺ (ClO₃)⁻

HClO₄ H⁺ (ClO₄)⁻

$$P_{eq}(ossiacido) = PF/1$$

$$P_{eq}(ossiacido) = PF/2$$

$$H_3PO_4 3H^+ (PO_4)^{3-}$$

$$P_{eq}(ossiacido) = PF/3$$

Peso equivalente per un elettrolita Indicando l'elettrolita nella generica forma:

$$A_{\mathbf{m}}B_{\mathbf{n}} \implies \mathbf{m} \mathbf{A}^{\mathbf{n}+} + \mathbf{n} \mathbf{B}^{\mathbf{m}-}$$

$$P_{eq} = \frac{P_F}{m \cdot n}$$

$$KCl \longrightarrow K^+ + Cl^- \qquad m=1, n=1 \qquad P_{eq} = P_F/1$$

$$BaCl_2 \longrightarrow Ba^{2+} + 2Cl^- \qquad m=1, n=2 \qquad P_{eq} = P_F/2$$

$$FeCl_3 \longrightarrow Fe^{3+} + 3Cl^- \qquad m=1, n=3 \qquad P_{eq} = P_F/3$$

$$H_4SiO_4 \longrightarrow 4H^+ + (SiO_4)^{4-} \qquad m=4, n=1 \qquad P_{eq} = P_F/4$$

$$Fe_2(SO4)_3 \longrightarrow 2Fe^{3+} + 3(SO_4)^{2-} \qquad m=2, n=3 \qquad P_{eq} = P_F/6$$

Nelle reazioni di ossido-riduzione il peso equivalente di un composto dipende dal numero di elettroni che vengono scambiati durante l'ossidoriduzione.

$$NO_3^- + 3e^- \rightarrow NO$$

$$P_{eq}(NO_3^-) = MF/3$$

$$NO_3^- + e^- \rightarrow NO_2$$

$$P_{eq}(NO_3^-) = MF/1$$

$$N = \frac{n_{eq}^{\circ}}{1 \ litro \ \text{soluz.}} = \frac{\frac{g}{P_{eq}}}{1 \ litro \ \text{soluz.}}$$

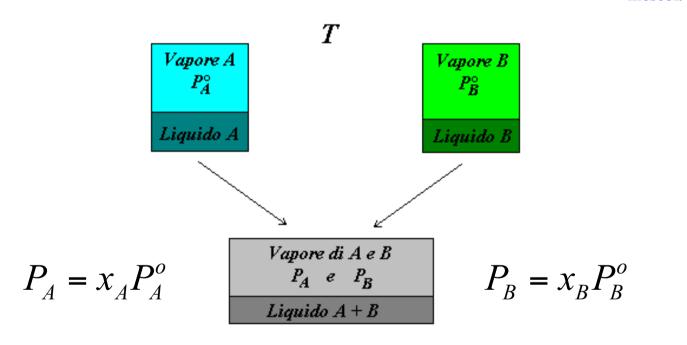
$$N = \frac{\frac{g}{P_F}}{\frac{|Valenz|}{1 \text{ litro soluz.}}} = \frac{n^{\circ}_{mol} \cdot Valenz.}{1 \text{ litro soluz.}} = M \cdot Valenz.$$

Liquidi completamente miscibili

Due liquidi si dicono completamente miscibili quando è possibile fare soluzioni con qualsiasi concentrazione; cioè si possono ottenere soluzioni in cui la frazione molare di A è $0 \le x_A \le 1$ e la frazione molare di B è $1 \ge x_B \ge 0$ (dovendo essere $x_A + x_B = 1$). *Unica fase*

Liquidi parzialmente miscibili

Sono parzialmente miscibili due liquidi A, B allorché A è limitatamente solubile in B e B limitatamente solubile in A. Si ottengono così due soluzioni stratificate per densità le quali sono una A satura di B e l'altra B satura di A. *Due fasi*


Liquidi completamente immiscibili

La totale immiscibilità è assai rara perche esiste sempre una pur piccolissima solubilità reciproca. Tuttavia per valori piccoli di solubilità ($\leq 10^{-3}$ F) vengono considerati praticamente in Dines fiibili.

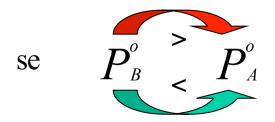
Miscele di liquidi completamente miscibili

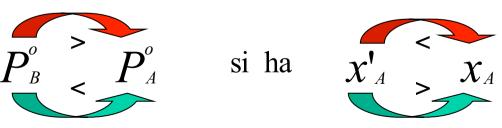
Legge di Raoult

Consideriamo il mescolamento di due liquidi (A, B) che ha un $\Delta H_{\text{mescol.}} = 0$

$$P_{Totale} = P_A + P_B = x_A P_A^o + x_B P_B^o$$

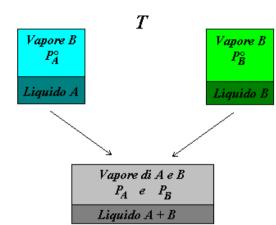
$$x'_A = \frac{P_A}{P}$$


$$x'_{B} = \frac{P_{B}}{P}$$


$$x'_{A} = \frac{P_{A}}{x_{A}P_{A}^{o} + x_{B}P_{B}^{o}}$$
 Divido numeratore e denominatore per P_{A}^{o}

$$x'_{A} = \frac{x_{A}}{x_{A} + x_{B} \frac{P_{B}^{o}}{P_{A}^{o}}}$$

$$P_{A} = x_{A} P_{A}^{o}$$


Essendo $x_A + x_B = 1$

Variazione dell'energia libera nel fenomeno di soluzione

Per 1 mol di vapore che passa a $T = \cos t$ da una pressione P_1 a P_2

$$dG = VdP - SdT$$

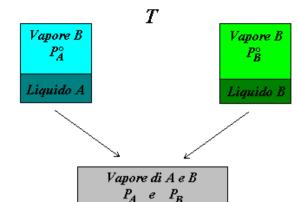
$$dG = VdP$$

$$dG = \frac{RT}{P} dP$$

Essendo
$$T = cost$$

Considerando il comportamento ideale per il vapore

$$\int_{G_1}^{G_2} dG = \int_{P_1}^{P_2} \frac{RT}{P} dP \qquad \Delta G = RT \ln \frac{P_2}{P_1}$$


Per due liquidi A e B che si mescolano

$$\Delta G_{\text{Vap.\,A}} = RT \ln \frac{P_{\text{A}}}{P_{\text{A}}^{\text{o}}} \qquad \qquad \Delta G_{\text{Vap.\,B}} = RT \ln \frac{P_{\text{B}}}{P_{\text{B}}^{\text{o}}}$$

Se la soluzione dei due liquidi A e B è ideale

$$\Delta G_{\text{vap A}} = RT \ln x_A$$

$$\Delta G_{\text{vap B}} = RT \ln x_B$$

Liauido A + B

$$\Delta G_{\text{vap}} = \Delta G_{\text{liq}}$$

$$\Delta G_{\text{liq A}} = RT \ln x_A$$

$$\Delta G_{\text{liq B}} = RT \ln x_B$$

Il valore della variazione di Energia Libera (ΔG) relativa al mescolamento di n_A mol di A e n_B mol di B è dato da:

$$\Delta G_{\text{mes}} = n_A \Delta G_{\text{liq}A} + n_B \Delta G_{\text{liq}B}$$

$$\Delta G_{\text{mes}} = RT (n_A \ln x_A + n_B \ln x_B)$$

Essendo
$$x_A + x_B = 1$$

$$\ln x_A = \ln x_B \quad \text{sono} < 0$$

$$\Delta G_{\text{mes}} < 0$$

$$\Delta G_{\text{mes}} = \Delta H_{\text{mes}} - T \Delta S_{\text{mes}}$$

Essendo $\Delta H_{mes} = 0$

$$\Delta s_{\text{mes}} > 0$$

Calcolo del ΔS di mescolamento

$$\Delta G_{\text{mes}} = \Delta H_{\text{mes}} - T \Delta S_{\text{mes}}$$

Per soluzioni ideali

$$\Delta S_{mes} = -\frac{\Delta G_{mes}}{T} = -R \left(n_A \ln x_A + n_B \ln x_B \right)$$

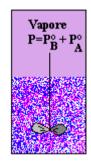
Per soluzioni reali

$$\Delta S_{mes} = \frac{\Delta H_{mes} - \Delta G_{mes}}{T}$$

 ΔH_{mes} si determina sperimentalmente

$$\Delta G_{mes} = RT \left(n_A \ln \frac{P_A}{P_A^o} + n_B \ln \frac{P_B}{P_B^o} \right)$$

Valori molari di ΔH° , ΔS° , ΔG° relativi al passaggio in soluzione acquosa di alcuni Sali (T = 25 °C; 1mol di sale in ~200 mol di acqua


Specie chimica	ΔH° (kJ/ mol)	ΔS° (J • K ⁻¹ •mol ⁻¹)	ΔG° (kJ • mol ⁻¹)
$AgNO_3$	22.47	79.50	- 1.23
KNO ₃	34.94	157.86	- 12.12
RbBr	21.88	96.73	- 6.96
KC1	17.24	75.02	- 5.16
SrCl ₂	-52.01	- 46.44	- 38.16
$ZnBr_2$	-66.94	- 82.42	- 42.37

Liquidi completamente immiscibili

In questo caso *i due liquidi A e B formano due strati separati*, con il liquido a densità maggiore sul fondo del recipiente. La totale immiscibilità è assai rara perché esistente sempre una sia pur piccola miscibilità reciproca.

La **pressione di vapore** (P) di una coppia di liquidi A, B immiscibili, ad una temperatura t, e mantenuti in viva agitazione, è data dalla somma delle pressioni di vapore di A e di B, alla temperatura t: $P = p_A^o + p_B^o$

Se due liquidi non miscibili A e B vengono posti ambedue a contatto con una specie S, solubile in ciascuno di essi, il rapporto delle concentrazioni di S nei due liquidi ha un valore costante, che prende il nome di **coefficiente di ripartizione** della specie S fra A e B.

Dibattendo il volume V_A della soluzione A contenente Q grammi della specie S, con il volume V_B del liquido B, e indicando con x la quantità di S che passa da A in B è:

$$K_{Rip} = \frac{[S]_A}{[S]_B} = \frac{\frac{x}{V_B}}{\frac{Q-x}{V_A}}$$

Il principio di ripartizione trova estese applicazioni nei processi di estrazione.