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Abstract. We discuss degenerations of symplectic and orthogonal represen-
tations of symmetric quivers and algebras with self-dualities. As in the non-

symmetric case, we define a partial ordering, that we call symmetric Ext-order
which gives a sufficient criterion for a symmetric degeneration. Then a detailed

discussion of type A quivers and their (symmetric) representation theory via

Auslander-Reiten theory leads to our main theorem which states that the sym-
metric degeneration order of a symmetric quiver of finite type is induced by the

”usual” degeneration order between representations of the underlying quiver.
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1. Introduction

Let X be a complex algebraic variety acted upon by a group G. Suppose that the
pair (G, X) satisfies the following:

(1) both G and X are equipped with involutions ρ : G → G, g 7→ gρ and
∆ : X → X, x 7→ ∆x such that ∆(g ·∆x) = gρ ·x. Denote by Gρ ⊂ G and
X∆ ⊂ X the sets of fixed points;

(2) the group G is a subgroup of the group of invertible elements E× of a
finite-dimensional associative algebra E over C;

(3) the anti-involution of G given by g 7→ g∗ := (gρ)−1 extends to a C–linear
anti-involution f 7→ f∗ on the algebra E;

(4) for every fixed point x ∈ X∆, its stabilizer H = StabG(x) is the group of
invertible elements of its linear span SpanC(H) ⊂ E.

Then Magyar, Weyman and Zelevinsky [20, Section 2.1] (generalizing a result of
Richardson [21] and one of Derksen and Weyman [15, Theorem 2.6]) prove that for
every fixed point x ∈ X∆

(1.1) Gx ∩X∆ = Gρ x.

Equation (1.1) means that the orbit of a fixed point by the “small” group Gρ is the
intersection of its orbit by the “big” group G with the set of fixed points. It is then
natural to ask if the same happens for the Zariski orbit closures:

Question 1.1. Is it true that Gx ∩X∆ = Gρ x, for every x ∈ X∆ ?

Example 1.1. Let X ⊂ Matn(C) be the variety of n×n nilpotent complex matrices
and G = GLn acting on X by conjugation. Let ∆ and ρ be the involutions on X
and G such that Gρ = SPn is the symplectic group (or Gρ = On is the orthogonal
group) and X∆ ⊂ spn = Lie(SPn) (or X∆ ⊂ on = Lie(On)) is the nilpotent cone.
It is straightforward to check that the hypotheses (1)–(4) are satisfied for the pair
(X,G). By classical work of Freudenthal, Gerstenhaber and Hesselink (compare
with [19, Proposition 2.1]) it is known that the answer to Question 1.1 is positive
in this case.

A pair (X,G) as above can be found in the context of representation theory of
finite dimensional algebras endowed with a self-duality (see Section 2.4) and we give
another proof of Magyar, Weyman and Zelevinsky’s result in this specific context
in Section 2.6. We are aware of an example arising in this context where the
answer to Question 1.1 is negative [9]. In this paper we provide a positive answer
to Question 1.1 in case of symmetric quiver algebras of finite representation type.

Let us explain the context, the results and our motivations to seek Question 1.1.

Quiver algebras. Let k = C be the field of complex numbers. A quiver Q is a finite
oriented graph given by a quadruple Q = (Q0,Q1, s, t) where Q0 denotes the finite
set of vertices of Q, Q1 denotes the finite set of edges and s, t : Q1 → Q0 are two
functions that provide the orientation α : s(α)→ t(α) of the edges. For simplicity
of notation we consider the elements of Q1 as oriented edges or arrows. A path in
Q is defined to be a sequence of arrows ω = αs · · ·α1, such that t(αk) = s(αk+1)
for all k; formally we include a path εi of length zero for each i ∈ Q0 starting and
ending in i. The path algebra kQ of Q is defined to be the k-vector space with a
basis given by the set of all paths in Q. The multiplication of two paths is defined
by concatenation of paths. Let R be the arrow ideal of kQ which is the (two-sided)
ideal generated by the arrows of Q. Let I ⊆ kQ be an ideal such that there is an
integer s with Rs ⊆ I ⊆ R2 (i.e. it is admissible). The quotient algebra A := kQ/I
is finite-dimensional and associative, and we refer to it as a quiver algebra (standard
references are [4, 6, 12, 23]).
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Symmetric quiver algebras. A symmetric quiver as defined in [15] is a pair (Q, σ)
where Q is a finite quiver and σ : Q→ Qop is an involutive isomorphism of Q with
its opposite Qop, i.e. it is an involution of Q0 and of Q1, reversing the orientation
of arrows. Notice that σ is defined on the underlying graph of Q and once this is
fixed we say that Q and σ are compatible. For example, let us consider the Dynkin
diagram of type A3, 1 α 2 β 3, and let σ be its non-trivial involution given by
σ(1) = 3, σ(2) = 2, and σ(α) = β. Let Q(1) = 1 α //2 β //3 and Q(2) = 1 α //2 3βoo

be two quivers of type A3. Then Q(1) is compatible with σ, i.e. (Q(1), σ) is a
symmetric quiver, but Q(2) is not compatible with σ. Actually, Q(2) cannot be
endowed with the structure of a symmetric quiver, since σ is the only non-trivial
involution of its underlying graph.

Let (Q, σ) be a symmetric quiver. For every admissible ideal I ⊂ kQ such
that σ(I) = I, the quiver algebra A = kQ/I is isomorphic (via σ) to its opposite
Aop = kQop/σ(I). The pair (A, σ) is called a symmetric quiver algebra.

(Symmetric) representation theory. The representation theory of symmetric quivers
or generalized quivers with dimension vectors was developed by Derksen and Wey-
man in [15] and it has strong connections with the theory of symmetric spaces and
θ-groups of Vinberg [26] and the results of Kac [17, 18], as explained in [15] and [25].
We recall here a few facts about it. Let (A, σ) be a symmetric quiver algebra. An
A-module or an A-representation is a representation of the quiver Q satisfying the
relations from I. Thus, a representation is a pair M = (V, f) where V = ⊕i∈Q0

Vi
is a finite dimensional Q0-graded vector space and f = (fα : Vs(α) → Vt(α))α∈Q1

is a collection of linear maps such that fπ = 0 for every π ∈ I. The vector space
V is called the underlying vector space of the representation M and its graded
dimension d = dimV = (dimVi)i∈Q0

is called the dimension vector of M or V .
Notice that V is itself an A-module, by choosing all the linear maps to be zero; it
is called the semisimple module of dimension vector d. A morphism of A-modules
h : (V, f) → (W, g) is a collection of linear maps (hi : Vi → Wi)i∈Q0

such that
ht(α) ◦ fα = gα ◦ hs(α). We denote by Rep(A) the category of finite dimensional
representations of A. Let V = ⊕i∈Q0Vi be a Q0-graded complex vector space of
dimension vector d. We denote by R(A, V ) the variety of A-modules having V as
underlying vector space. Thus

R(A, V ) ⊆ R(kQ, V ) :=
⊕

α:i→j∈Q1

Homk(Vi, Vj).

We denote by GL•(V ) :=
∏
i∈Q0

GL(Vi) the group of graded automorphisms of V .

We sometimes think of GL•(V ) as embedded into GL(V ) as diagonal block matrices
(see [15, Section 1]). The group GL•(V ) acts on R(A, V ) by change of basis, i.e.
given g = (gi)i∈Q0

∈ GL•(V ) and M = (Mα)α∈Q1
∈ R(A, V ) the representation

g · M is defined by (g · M)α = gt(α) ◦ Mα ◦ g−1
s(α). The GL•(V )-orbits are the

isomorphism classes of A-representations with underlying vector space V .
Let ε be +1 or −1. We say that a bilinear form 〈−,−〉 : V × V → C on V is a

σ-compatible ε-form on V if:

(i) the form 〈−,−〉 is non-degenerate;
(ii) the form 〈−,−〉 is compatible with σ, i.e. 〈−,−〉|Vi×Vj = 0 if j 6= σ(i);
(iii) the form 〈−,−〉 is an ε-form: i.e. 〈v, w〉 = ε〈w, v〉 for every v, w ∈ V .

The pair (V, 〈−,−〉) is called an ε-quadratic space for (Q, σ) or for (A, σ). Notice
that the dimension vector of V is σ-symmetric in this case, i.e. dσ(i) = di for
every i ∈ Q0. Indeed, by (ii), the non-degenerate bilinear form 〈−,−〉 induces an
isomorphism between Vi and the linear dual of Vσ(i). Every endomorphism f of V
has a unique adjoint f? with respect to the non-degenerate bilinear form 〈−,−〉
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defined by the condition 〈f(v), w〉 = 〈v, f?(w)〉, for all v, w,∈ V . We denote by
G(V, 〈−,−〉) = {g ∈ GL(V )|g = (g?)−1} the group of isometries of (V, 〈−,−〉).
A point M ∈ R(A, V ) can be considered as an endomorphism of V . Following
[15], we say that M ∈ R(A, V ) is an ε-representation of (A, σ) with respect to
(V, 〈−,−〉) if

(iv) M? +M = 0.

Condition (iv) means that M lies in the Lie algebra of the group G(V, 〈−,−〉) and
condition (ii) implies that M?

α = −Mσ(α), i.e. 〈Mα(v), w〉 + 〈v,Mσ(α)(w)〉 = 0 for
every arrow α : i → j, v ∈ Vi and w ∈ Vσ(j). For ε = +1, M is hence called
an orthogonal representation of (A, σ) and for ε = −1, it is called a symplectic
representation of (A, σ).

We denote by R(A, V )〈−,−〉,ε = {M ∈ R(A, V )|M? + M = 0} the variety of ε-
representations of A with respect to (V, 〈−,−〉). We denote by G•(V, 〈−,−〉) :=
G(V, 〈−,−〉) ∩ GL•(V ) the group of graded isometries of (V, 〈−,−〉). Thus g =
(gi) ∈ GL•(V ) belongs to G•(V, 〈−,−〉) if and only if gσ(i) = (g?i )−1. The action

of GL•(V ) on R(A, V ) induces an action of G•(V, 〈−,−〉) on R(A, V )〈−,−〉,ε by
change of basis (see Section 2.4).

Example 1.2. [Type (A2, ε)]. Let R = Matn×n(C) be the vector space of complex
n × n matrices. For ε = −1 let Rε = Symn denote the subspace of symmetric
matrices and for ε = 1 let Rε = ASymn denote the space of anti-symmetric matri-

ces. Let V = Cn ⊕ Cn. We view R ⊂ End(V ) as

(
0 0

R 0

)
so that the elements

of R are considered as linear maps from the first copy of Cn to the second one.
Let Q = 1 //2 be a quiver of type A2 and let σ be the anti-involution on Q.
Then R can be seen as the representation variety R(n,n)(CQ). On V we define the

σ-compatible ε-form 〈v, w〉 := vtJw where J =

(
0 ε1n

1n 0

)
. Then, a short calcu-

lation shows that the variety of ε-representations of Q with respect to (V, 〈−,−〉) is
Rε = {A ∈ R|At + εA = 0} and thus we recover the two subspaces defined above.
The group GL•(V ) = GLn×GLn acts on R by base change ((g1, g2), A) 7→ g2Ag

−1
1 ,

and the group G•(V, 〈−,−〉) = {(g1, g2)| g1 = (gt2)−1} ' GLn acts on Rε by con-
gruence (g2, A) 7→ g2Ag

t
2. Two n× n matrices are in the same GL•(V )-orbit if and

only if they have the same rank. The theorem of Magyar, Weyman and Zelevinky
applies here (see Section 2.4) and states the well-known fact that two symmetric
(or anti-symmetric) matrices are congruent if and only if they have the same rank.

Example 1.3. [Type (A3, ε)] Let U be a finite dimensional complex vector space
and let U∗ denote its linear dual. Let ε be +1 or −1 and let (W, 〈−,−〉) be
an ε-quadratic vector space. The isometry group G(W, 〈−,−〉) equals SP(W ) if
ε = −1 and O(W ) if ε = 1. Let R = Hom(U,W ) ⊕ Hom(W,U∗). Then R is a
representation variety for the quiver Q = 1 α //2 β //3 of type A3 and we denote
its elements as (fα, fβ). Given fα ∈ Hom(U,W ) we denote by f?α ∈ Hom(W,U∗)
the linear map defined by f?α(w)(u) = 〈fα(u), w〉 for all w ∈ W and u ∈ U . Let
Rε = {(fα, f?α)} ⊂ R be the subspace of fixed points for the involution (fα, fβ) 7→
(f?β , f

?
α). It is easy to see that the fixed point set Rε can be realized as a variety

of ε-representations for the symmetric quiver (Q, σ). Let us consider the group
G = GL(U)×GL(W )×GL(U∗). As usual, for an endomorphism h of U we denote
by h∗ the endomorphism of U∗ given by h∗(g)(u) = g(h(u)) for all g ∈ U∗ and
u ∈ U . Similarly, for an endomorphism h of W we denote by h? its adjoint with
respect to 〈−,−〉 which is the unique endomorphism of W such that 〈h(w1), w2〉 =
〈w1, h

?(w2)〉 for every w1, w2 ∈ W . Let us consider the involution on G given by
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(g1, g2, g3) 7→ ((g∗3)−1, (g?2)−1, (g∗1)−1) and let Gε be the subgroup of fixed points.
We notice that Gε ' GL(U)×G(W, 〈−,−〉).

The group G acts on R by change of basis, i.e. given g = (g1, g2, g3) and f =
(fα, fβ) ∈ R, g · f = (g2fαg

−1
1 , g3fβg

−1
2 ). It is well-known that the only invariants

for this action are rk(f) = (rk(fα), rk(fβ), rk(fβ ◦ fα)) and thus f ′ = (f ′α, f
′
β) lies

in the G-orbit of f = (fα, fβ) if and only if rk(f) = rk(f ′).
The action of G on R restricts to an action of Gε on Rε. We notice that for a

point f = (fα, f
?
α) in Rε, the rank of f?α is equal to the rank of fα and the rank of

f?α ◦ fα is the rank of the form on W restricted to the image of fα, and thus these
two ranks are preserved by the action of Gε on Rε.

The theorem of Magyar, Weyman and Zelevinsky applies to this example (see
Section 2.4) and states that two points f = (fα, f

?
α) and f ′ = (f ′α, (f

′
α)?) in Rε

are in the same Gε-orbit if and only if rk(fα) = rk(f ′α) and the rank of the form
restricted to the images of fα and f ′α is the same.

(Symmetric) degenerations and orderings. For M,N ∈ R(A, V ) we denote M ≤deg

N if and only if N ∈ GL•(V )M and we say that M degenerates to N or that
N is a degeneration of M . For ε = +1 or −1 and two ε-representations M,N ∈
R(A, V )〈−,−〉,ε, we denote M ≤εdeg N if and only if N ∈ G•(V, 〈−,−〉)M and say
that M degenerates symmetrically to N or that N is a symmetric degeneration of
M . In Section 2.4 we show that the theorem of Magyar, Weyman and Zelevinsky
applies to this situation and a positive answer to Question 1.1 means that ≤deg

and ≤εdeg coincide on R(A, V )〈−,−〉,ε. In Section 3 we define a third order that

we call symmetric Ext-order, denoted by ≤εExt (see Definition 3.2). We obtain

Corollary 3.3, which states that ≤εExt
+3 ≤εdeg .

Algebras of finite representation type. Question 1.1 is particularly interesting when
the orbit closures can be described by a finite number of invariants. In the context
of symmetric representation varieties, this requirement is fullfilled by an algebra
A which is of finite representation type. Indeed, in this case, Zwara [27] proved
that the degeneration order ≤deg is equivalent to the so-called Hom-order (see
Section 4.1). This implies that the orbit closures in X are described by checking a
finite number of inequalities which is independent on X and G. Even in this special
case, the answer to Question 1.1 is negative [9]. It is then an open problem to find
conditions on (X,G) or on the algebra A such that the answer to Question 1.1
is positive. In this paper we investigate this problem in the case of a symmetric
hereditary quiver algebras of finite representation type. These algebras are the
path algebras of symmetric quivers of finite type. A symmetric quiver is called
of finite type if it admits only a finite number of indecomposable ε–representations
(see Section 2.8 for a description of indecomposable ε-representations). In [15,
Proposition 3.3] it is shown that a (connected) symmetric quiver is of finite type if
and only if it is a symmetric orientation of a Dynkin diagram of type A. We hence
restrict ourselves to this situation.

For n ≥ 2, we denote by An the Dynkin diagram of type An: with the following
labelling of vertices and edges:

An : 1
e1

2
e2 · · ·

en−2

n− 1
en−1

n.

Let σ be the non-trivial automorphism of An (i.e. σ(i) = n+ 1− i and σ(αi) =
αn−i). In case n is odd there is a unique σ-fixed vertex and no σ-fixed arrow; if
n is even there is a unique σ-fixed edge and no σ-fixed vertex. We distinguish the
two cases by writing Aodd and Aeven. Let (Q, σ) be a symmetric quiver of type An.
A typical example is the equioriented quiver that we denote by
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→
An: 1 // 2 // · · · // n− 1 // n.

Other examples are the alternating quivers with an even number of vertices (having
α as σ-fixed arrow)

2

�� ��

4

�� ��

· · ·

�� ��

n+ 1
α

�� ��

· · ·

�� ��

2n

��
1 3 5 · · · n n+ 2 · · · 2n− 1

and those with an odd number of vertices (having n+ 1 as σ-fixed vertex):

2

�� ��

· · ·

����

n

����
1 3 n− 1 n+ 1

!!

n+ 3

��}}

2n− 1

����

2n+ 1

��
n+ 2 · · · 2n

Main result. The following is the main result of the paper:

Theorem 7.1. Let (Q, σ) be a symmetric quiver of type A. Let ε be +1 or −1.
Then on the ε-representations we have

(1.2) ≤εExt
ks +3 ≤εdeg

ks +3 ≤deg

The implication ≤εExt
+3≤εdeg is proved in Corollary 5 for any symmetric quiver

algebra. The implication ≤deg
+3≤εExt is the most surprising and it is proved

in Section 7 (see Theorem 7.1). The proof is constructive in the sense that given
two ε-representations M,N ∈ R(Q, V )〈−,−〉,ε such that M ≤deg N it shows how to
inductively find a sequence of ε-representations M = M(0),M(1), · · · ,M(k) = N
such that there is a one-parameter subgroup λi(t) ∈ G•(V, 〈−,−〉) which fullfills
limt→0 λi(t) · M(i) = M(i + 1) for every i (see Section 8 for examples). This
strategy is inspired by a variation of Bongartz’s proof of the classical implication
≤deg

+3≤Ext for Dynkin quivers that we recall in Corollary 4.3. Thus, it is
heavily based on the celebrated cancellation theorem of Bongartz [7, Theorem 2.4]
that we recall in Subsection 4.3. The main new ingredient is what we call generic
ε-subquotients of an ε-representation by an indecomposable isotropic subrepresen-
tation. Proposition 6.12 states that (under some mild hypotheses) it is possible to
embed isotropically an indecomposable representation into an ε-representation and
this embedding is generic (see Subsection 4.2 for the definition of generic quotients,
generic embeddings and their dual version).

Our goal is to make the paper self-contained and spare the reader a long search
through the literature. In Section 5 we recall with proofs many special features of
the representation theory and Auslander-Reiten theory of quivers of type A, used
in the proof of Theorem 7.1. We address the reader to the references only for those
aspects which hold in greater generality (e.g. for Dynkin quivers, or for gentle
algebras) and whose proofs are not simpler when restricted to our context. Subsec-
tion 5.3 contains an explicit description of generic quotients by indecomposables.
Section 6 is dedicated to highlight essential facts about ε-representations of quivers
of type A, including the key concepts of generic isotropic subrepresentations and
generic ε-subquotients.

We conjecture that Theorem 7.1 holds for every symmetric algebra which is
representation-directed. It is an open problem to investigate if Theorem 7.1 holds
true for every symmetric quiver algebra of finite representation type whose inde-
composable modules are rigid (compare with [27, Theorem 2]).
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Example 1.4. In the context of Example 1.2, Theorem 7.1 states that given two
symmetric (or anti-symmetric) matrices A and B, then B ∈ GLnA if and only if
rk(B) ≤ rk(A).

Example 1.5. In the context of Example 1.3, Theorem 7.1 states that given two
adjoint pairs f = (fα, f

?
α) and f ′ = ((f ′)α, (f

′)?α) in Rε, then f ′ ∈ Gε f if and only
if rk(f ′) ≤ rk(f).

Motivations. One of our motivations to seek Theorem 7.1 comes from the study
of linear degenerations of the symplectic (complete) flag variety, in analogy with
[13, 14]. Indeed, let A = kQ be the path algebra of the equioriented quiver of type
A2n−1 and let (V, 〈−,−〉) be a (−1)-quadratic space for (Q, σ) of dimension vec-
tor d = (2n, 2n, · · · , 2n). Then one can construct a GL•(V )〈−,−〉,(−1)-equivariant
family X → R(A, V )〈−,−〉,(−1) whose fiber over a symplectic representation con-
sists of its isotropic (actually Lagrangian) subrepresentations of dimension vector
e = (1, 2, · · · , 2n − 1). One sees immediately that the fiber over the generic point
is the complete symplectic flag variety. It is then an interesting problem to un-
derstand the geometric properties of the special fibers, which can be considered as
“linear” degenerations of the symplectic flag variety. The first step to study this
family, is to understand the orbit closures in the base. This is now clear thanks to
Theorem 7.1.

The general answer of Question 1.1 is furthermore interesting from an algebraic
Lie-theoretic point of view: It helps to answer questions about orbit closures in the
nilpotent cone. In more detail, the above described classical example of reductive
actions on the nilpotent cone can be generalized in many ways (e.g. restrict to
Borel-actions on certain subvarieties of nilpotent matrices as in [10]). This setup
can be translated via an associated fibre bundle to the (symmetric) representation
theory of a particular quiver with relations.

Acknowledgements. We thank Andrea Maffei, Corrado De Concini, Hans
Franzen, Francesco Esposito and Alessandro D’Andrea for helpful conversations.
We thank Raquel Coelho, Pierre-Guy Plamondon, Daniel Labardini-Fragoso, Jan
Schröer, and Gregorz Zwara for discussions about a possible generalization of The-
orem 7.1 to algebras associated with partial triangulations of polygons.

This work was sponsored by DFG Forschungsstipendium BO 5359/1-1, DFG
Rckkehrstipendium BO 5359/3-1 and DFG Sachbeihilfe BO 5359/2-1.

2. Algebras with self-dualities

In this section we give the proof of the result of Magyar, Weyman and Zelevinsky
mentioned in the introduction, applied to the symmetric representation varieties.
Along the way we introduce notation that will be used throughout the paper.

2.1. The self-duality. In this section, we introduce the self-duality which comes
along with a symmetric quiver algebra. Let A := kQ/I be a symmetric quiver
algebra associated with a symmetric quiver (Q, σ). The anti-involution σ induces
an isomorphism σ : A → Aop which induces an equivalence σ : Rep(A)→ Rep(Aop)
of the representation categories. By composing with the standard k-duality D =
Hom(−, k) we get a self-duality on Rep(A) that we denote by ∗ : Rep(A)→ Rep(A).

Example 2.1. Let Q = 1 α //2 β //3. The functor ∗ is defined on objects by

M = (V1 f //V2 g //V3) M∗ = (V ∗3 (g∗) //V ∗2 (f∗) //V ∗1 ).� //
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and on morphisms

M1 :

h

��

V1
f1 //

h1

��

V2
g1 //

h2

��

V3

h3

��

M∗2 :

h∗

��

W ∗3
g∗2 //

h∗3
��

W ∗2
f∗2 //

h∗2
��

W ∗1

h∗1
��

M2 W1
f2 //W2

g2 //W3 M∗1 : V ∗3
g∗1 //V ∗2

f∗1 //V ∗1

� //

Here and always throughout the paper, given a vector space V , we denote by V ∗ =
Hom(V, k) its linear dual and given a linear map f : U → V between two vector
spaces, its dual is the linear map f∗ : V ∗ → U∗ defined by f∗(h)(u) = h(f(u)) for
every h ∈ V ∗ and u ∈ U .

2.2. The functor ∇. It is convenient to introduce the following twist of the self-
duality ∗. For a Q0-graded vector space V = ⊕i∈Q0Vi, we define its “twisted
dual” ∇V as the Q0-graded vector space whose i-th component is (∇V )i = V ∗σ(i).

We define a functor ∇ : Rep(A) → Rep(A) as follows: given a representation
M ∈ R(A, V ) its twisted dual is a representation ∇M ∈ R(A,∇V ) defined by
∇(M)α = −M∗σ(α) for every arrow α (notice the minus sign); given a morphism

h : M → N its twisted dual is defined by (∇h)i = h∗σ(i), for every vertex i ∈ Q0.

Example 2.2. Let Q = 1 α //2 β //3. The functor ∇ is defined on objects by

M = (V1 f //V2 g //V3) ∇M = (V ∗3 (−g∗) //V ∗2 (−f∗) //V ∗1 ).� //

and on morphisms as the self-duality ∗ (see Example 2.1).

2.3. The isomorphism Ψ. Let (V, 〈−,−〉) be an ε-quadratic space for the sym-
metric quiver (Q, σ). The form 〈−,−〉 induces the isomorphism Ψ : V → ∇V given
by Ψ(v) = 〈v,−〉 for every v ∈ V . Moreover, this isomorphim satisfies the relation:

(2.1) ∇Ψ = εΨ.

Indeed, by canonically identifying ∇∇V ' V via the evaluation map, we get
∇Ψ(v1)(v2) = Ψ(v2)(v1) = 〈v2, v1〉 = ε〈v1, v2〉 = εΨ(v1)(v2). Viceversa, if Ψ :
V → ∇V is an isomorphism of Q0-graded vector spaces satisfying (2.1), then the
bilinear form on V given by 〈v1, v2〉 := Ψ(v1)(v2) is a σ-compatible ε-form on V .
Thus the datum of a σ-compatible ε-form on V is equivalent to the datum of an iso-
morphism Ψ : V → ∇V satisfying (2.1). With abuse of terminology we sometimes
say that Ψ is an ε-form on V .

With this ingredient, the definition of an ε-representation is reformulated as
follows: a representation M with underlying vector space V is an ε-representation
with respect to 〈−,−〉 if and only if Ψ is an A-isomorphism from M to ∇M . Thus
we sometimes use the following notation for the variety R(A, V )〈−,−〉,ε:

(2.2) R(A, V )Ψ,ε = {M ∈ R(A, V )|Ψ ∈ HomA(M,∇M)}.

In terms of Ψ, an element g ∈ GL•(V ) belongs to the group of graded isometries
G•(V, 〈−,−〉) if and only if ∇g ◦Ψ ◦ g = Ψ and we use the following notation:

G•(V,Ψ) = {g ∈ GL•(V )| ∇g ◦Ψ ◦ g = Ψ}.

Two ε-representations M,N ∈ R(A, V )Ψ,ε are isomorphic as ε-representations if
there exists an isomorphism θ : M → N of A-representations such that ∇θ◦Ψ◦θ =
Ψ. We sometimes write a point of R(A, V )Ψ,ε as (M,Ψ) to highlight the dependency
on Ψ and we say that M is an ε-representation with respect to the ε-form Ψ.
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Remark 2.3. An ε-representation M is isomorphic to its “ twisted dual” ∇M via
the isomorphism Ψ. We sometimes omit to mention this isomorphism and freely
identify M and ∇M . Thus, for example, if f : L → M is an homomorphism then
∇f : ∇M → ∇L and we sometimes write ∇f ◦ f : L→ ∇L instead of ∇f ◦Ψ ◦ f .

2.4. Embedding into the general context. In this section we show that the
theorem of Magyar, Weyman and Zelevinsky mentioned in the introduction ap-
plies to the symmetric representation varieties. Let (A, σ) be a symmetric quiver
algebra, let (V, 〈−,−〉) be an ε-quadratic space for (A, σ), let X = R(A, V ) and
G = GL•(V ). Let E = End•(V ) =

∏
i∈Q0

End(Vi) be the finite dimensional al-
gebra of graded endomorphisms of V . Thus G ⊂ E is the group of invertible
elements of E. For M ∈ R(A, V ) we denote by ∆M ∈ R(A, V ) the represen-
tation (∆M)α := −M?

σ(α) : Vi → Vj for every arrow α : i → j. Similarly, for

f = (fi)i∈Q0 ∈ E we denote by ∆f ∈ E the graded endomorphism of V given
by (∆f)i = f?σ(i) : Vi → Vi. Notice that ? denotes the adjoint with respect to

the bilinear form 〈−,−〉 and thus the functor ∆ is slightly different from the func-
tor ∇ defined in Section 2.2. On the pair (X,G) we consider the two involutions
∆ : X → X : M 7→ ∆M and ρ : G → G : g 7→ gρ = ∆(g)−1. The variety
R(A, V )〈−,−〉,ε of ε-representations of (A, σ) with respect to (V, 〈−,−〉) is hence
the variety X∆ of ∆-fixed points and the group G•(V, 〈−,−〉) of graded isometries
of (V, 〈−,−〉) is the group Gρ of ρ-fixed points. We now have to check that the four
hypotheses mentioned in the introduction are satisfied by the pair (X,G) endowed
with the two involutions ∆ and ρ.

(1) Let α : i → j be an arrow of Q and thus σ(α) : σ(j) → σ(i) is the
symmetric arrow. Let g ∈ G and M ∈ X. Then (g ·M)α = gj ◦Mα ◦ g−1

i

and (g ·∆M)σ(α) = −gσ(i) ◦M?
α ◦ g−1

σ(j). Thus,

∆(g ·∆M)α = −(g ·∆M)?σ(α) = (gσ(i) ◦M?
α ◦ g−1

σ(j))
?

= (g−1
σ(j))

? ◦Mα ◦ g?σ(i) = (gρ ·M)α.

(2) The group G is the group of invertible elements of the algebra E.
(3) The anti-involution of G given by g 7→ (gρ)−1 = ∆g is the restriction to G

of the linear anti-involution of E given by f 7→ ∆f .
(4) For every ε-representation M , let H = Aut(M) denote its G-stabilizer.

Then an element h ∈ H is a collection h = (hi : Vi → Vi)i∈Q0 of linear
isomorphisms such that hjMαh

−1
i = Mα for every arrow α : i → j of

Q. This means that hjMα = Mαhi. The linear span of H hence consists
of those f = (fi) ∈ E such that fjMα = Mαfi and H is the group of
invertible elements of its linear span.

Thus [20, Prop. 2.1] applies to this situation and we have G ·M ∩X∆ = GρM for
every M ∈ X∆. We give another prove of this result in the subsequent section 2.6.

2.5. Automorphism groups of ε-representations. Let M ∈ R(A, V )Ψ,ε be an
ε-representation with respect to the ε-form Ψ : V → ∇V . The A-homomorphism
space Hom(M,∇M) admits a decomposition Hom(M,∇M) = Hom(M,∇M)∇ ⊕
Hom(M,∇M)−∇ into eigenspaces for the linear involution f 7→ ∇f , where

(2.3) Hom(M,∇M)±∇ := {θ ∈ Hom(M,∇M)| ∇θ = ±θ}.

For instance, Ψ ∈ Hom(M,∇M)ε∇. An automorphism of the ε-representation
(M,Ψ) is an automorphism θ : M → M of the A-representation M such that
∇θ◦Ψ◦θ = Ψ; in terms of the bilinear form this means that 〈θ(v1), θ(v2)〉 = 〈v1, v2〉
for every v1, v2 ∈ V . We denote by Aut(M,Ψ) the group of automorphisms of



10 MAGDALENA BOOS, GIOVANNI CERULLI IRELLI

(M,Ψ). In particular, Aut(M,Ψ) is a subgroup of GL•(V ) =
∏
i∈Q0

GL(Vi). The

Lie algebra Lie Aut(M,Ψ) consists of those θ ∈ Hom(M,M) such that

Ψ ◦ θ +∇θ ◦Ψ = 0

i.e. 〈θ(v1), v2〉+ 〈v1, θ(v2)〉 = 0 for every v1, v2 ∈ V . The dimension of Aut(M,Ψ)
can be computed as follows.

Lemma 2.4. Let (M,Ψ) be an ε-representation. Then

(2.4) Lie Aut(M,Ψ) ' Hom(M,∇M)−ε∇

In particular, dim Aut(M,Ψ) = dim Hom(M,∇M)−ε∇.

Proof. Consider the map ζ : Lie Aut(M,Ψ)→ Hom(M,∇M)−ε∇ : θ 7→ Ψ ◦ θ. This
map is well-defined: Ψ ◦ θ is indeed a homomorphism M → ∇M and moreover

∇(Ψ ◦ θ) = ∇θ ◦ ∇Ψ = ε∇θ ◦Ψ = −εΨ ◦ θ.

The map ζ is an isomorphism of vector spaces: indeed it is clearly linear and the
inverse is given by ζ ′ : Hom(M,∇M)−ε∇ → Lie Aut(M,Ψ) : f 7→ Ψ−1 ◦ f . �

2.6. Isomorphism classes of symmetric representations. The following re-
sult was proved by Derksen and Weyman in [15, Theorem 2.6] for symmetric quivers
without relations and it is a special case of the result proved by Magyar, Weyman
and Zelevinsky mentioned in the introduction (see Section 2.4). We provide a
different proof for symmetric quiver algebras.

Theorem 2.5. Let M,N ∈ R(A, V )Ψ,ε be two ε-representations of A. Then
they are isomorphic as ε-representations if and only if they are isomorphic as A-
representations.

Proof. If M and N are isomorphic as ε-representations, then they are isomorphic
as A-representations since the group G•(V,Ψ) is a subgroup of GL•(V ). To prove
the converse, we choose an isomorphism θ : M → N and we prove that there exists
ρ ∈ Aut(M), such that θ ◦ ρ fulfills ∇(θ ◦ ρ) ◦Ψ ◦ (θ ◦ ρ) = Ψ.

The group Aut(M) acts from the right on Hom(M,∇M)ε∇ as follows

Hom(M,∇M)ε∇ ×Aut(M) // Hom(M,∇M)ε∇,

(ξ, ρ) � // ξ · ρ := ∇ρ ◦ ξ ◦ ρ.

Let Hom0(M,∇M)ε∇ ⊆ Hom(M,∇M)ε∇ denote the open subset consisting of in-
vertible (ε∇)-invariant homomorphisms. Since Ψ ∈ Hom(M,∇M)ε∇ is an isomor-
phism, we see that Hom0(M,∇M)ε∇ is non-empty and hence dense in the vector
space Hom(M,∇M)ε∇.

The Aut(M)-action above descends to an action on Hom0(M,∇M)ε∇. We denote
by StabAut(M)(π) the stabilizer of a point π ∈ Hom0(M,∇M)ε∇ for this action.
Then StabAut(M)(π) = Aut(M,π). By Lemma 2.4 we get dim StabAut(M)(π) =

dim Hom(M,∇M)−ε∇. It follows that

dim Aut(M) = dim Hom(M,∇M) = dim StabAut(M)(π) + dim Hom(M,∇M)ε∇.

We hence see that every point in Hom0(M,∇M)ε∇ has a dense Aut(M)-orbit. Since
Hom(M,∇M)ε∇ is irreducible, being a vector space, two such orbits meet. Both
Ψ and ∇θ ◦Ψ ◦ θ lie in Hom0(M,∇M)ε∇. It follows that there exists ρ ∈ Aut(M)
such that (∇θ ◦Ψ ◦ θ) · ρ = Ψ, which is what we wanted to prove. �
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The following fact is very well-known. It basically says that two complex sym-
metric or anti-symmetric non-degenerate forms are conjugate under GL. In terms
of symmetric representation theory, it says that if M is an ε-representation with
respect to some ε-quadratic space (V, 〈−,−〉), then for any other choice 〈−,−〉′ of
a σ-compatible ε-form on V there is M ′ ' M such that M ′ is an ε-representation
with respect to (V, 〈−,−〉′). This fact is very useful when one makes computations
with ε-representations, since it allows to change the form at the best convenience.

Corollary 2.6. Let Ψ,Ψ′ ∈ Hom0(V,∇V )ε∇ be two σ-compatible ε-forms on a
Q0-graded vector space V . Then there exists g ∈ GL•(V ) such that ∇g ◦Ψ◦g = Ψ′.
In particular, if M is an ε-representation with respect to Ψ, then M ′ = g−1 ·M is
an ε-representation with respect to Ψ′.

Proof. In the proof of Theorem 2.5 replace M with the semisimple representation
V . Since Aut(V ) = GL•(V ) we get the first part. To get the second part, we notice
that if Ψ ∈ Hom(M,∇M)ε∇ then Ψ′ = ∇g ◦ Ψ ◦ g ∈ Hom(M ′,∇M ′)ε∇ where
M ′ = g−1 ·M . �

Remark 2.7. In view of Corollary 2.6 we can omit to mention the form with respect
to which a representation is an ε-representation and we just say that a representa-
tion is an ε-representation, without specifying the form. We hence sometimes use
the notation Rεd instead of R(A, V )〈−,−〉,ε or R(A, V )Ψ,ε to denote the variety of
ε-representations of a fixed dimension vector d. This is sloppy, since its points are
defined only up to isomorphisms, but we will be very careful and use it only when
there is no possibility of confusion. Similarly, we use the notation Gε

d instead of
G•(V, 〈−,−〉) or G•(V,Ψ) when the dependency on the form is not so relevant.

2.7. Isotropic subrepresentations. Let M ∈ R(A, V )Ψ,ε be an ε–representation
with respect to the isomorphism Ψ induced by the ε-form 〈−,−〉 on the underlying
vector space V . Let ι : N ↪→ M be a subrepresentation. The orthogonal space of
ι(N) in V is denoted with ι(N)⊥ and it is defined by

ι(N)⊥ = {v ∈ V | 〈v, ι(n)〉 = 0, ∀n ∈ N}.

In terms of the isomorphism Ψ, ι(N)⊥ is described in the following lemma.

Lemma 2.8. ι(N)⊥ = Ker(∇ι ◦Ψ) ' ∇(M/ι(N)). In particular, it is a subrepre-
sentation of M .

Proof. By definition 〈v, ι(n)〉 = Ψ(v)(ι(n)) = ∇ιΨ(v)(n).

The isomorphism Ker(∇ι ◦ Ψ) ' ∇(M/ι(N)) is induced by the following commu-
tative diagram with exact rows, where the lower short exact sequence is obtained

from 0 //N
ι //M //M/ι(N) //0 by applying ∇:

0 // ι(N)⊥ //

��

M
∇ιΨ //

Ψ

��

∇N // 0

0 // ∇(M/ι(N)) // ∇M ∇ι // ∇N // 0.

More concretely, the A-representation ∇(M/ι(N)) is the annihilator of ι(N) in the
dual space ∇(M) and thus the isomorphism ι(N)⊥ → ∇(M/ι(N)) is simply given
by m 7→ 〈m,−〉 = Ψ(m). �

By definition, ι(N) ∩ ι(N)⊥ is the kernel of the form restricted to ι(N)⊥. Thus,
ι(N)⊥/ι(N) ∩ ι(N)⊥ is an ε-representation.

A subrepresentation ι : N ↪→M is called isotropic if ι(N) ⊆ ι(N)⊥.
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Corollary 2.9. Let N be an A–representation, and M be an ε–representation. Let
f : N →M be a non-zero homomorphisms. Then the image of f is isotropic if and
only if ∇f ◦Ψ ◦ f = 0.

2.8. Indecomposable ε-representations. Given two ε-representations (M1,Ψ1)
and (M2,Ψ2) their direct sum is the ε-representation (M1 ⊕ M2,Ψ1 ⊕ Ψ2). An
ε-representation is called indecomposable or ε-indecomposable if it is not the di-
rect sum of two non-trivial ε-representations. By the Theorem of Krull, Remak
and Schmidt and by Theorem 2.5, every ε–representation can be written in an
essentially unique way as a direct sum of indecomposable ε–representations. The
following description of the indecomposable ε-representations is proved in [Propo-
sition 2.7][15] for symmetric quivers without relations (see also [25, Lemma 4.5]);

Lemma 2.10. Let M be an indecomposable ε-representation. Then one and only
one of the following three cases can occur:

(I) M is indecomposable as an A-representation. In this case M is called of
type (I), for “indecomposable”.

(S) There exists an indecomposable A-representation T such that M = T⊕∇T
and T 6' ∇T . In this case M is called of type (S), for “split”.

(R) There exists an indecomposable A-representation T such that M = T⊕∇T
T ' ∇T . In this case M is called of type (R) for “ramified”.

Proof. The proof of Derksen and Weyman [Proposition 2.7][15] uses only the fact
that the endomorphism ring of an indecomposable representation is local; since this
fact is true for every algebra by Fitting’s lemma [6, Corollary 4.8], the same proof
applies to the case of symmetric quiver algebras. �

3. Isotropic degenerations

In order to approach the degeneration order for (non-symmetric) A-representations
there is a famous second ordering, namely the Ext-order. It is defined on the
isoclasses of A–representations of dimension vector d as follows ([1, 7, 22, 21]):
Given M,N ∈ R(A, V ),

(3.1) M ≤Ext N ks
def +3 There exist representations M1, · · · ,Mk such that for

every i there exists a short exact sequences

0→ Ui →Mi−1 → Vi → 0

such that M1 = M,Mk = N, Mi ' Ui ⊕ Vi.

Indeed, by [7, Lemma 2.1]: ≤Ext
+3 ≤deg . In this section we provide an ana-

logue of this result for ε-representations.

Theorem 3.1. Let M ∈ R(A, V )Ψ,ε be an ε–representation and let ι : L ↪→ M be
an isotropic subrepresentation. Then

(3.2) M ≤εdeg L⊕∇L⊕ (ι(L)⊥/ι(L)).

More precisely, there is a one-parameter subgroup λ(t) ∈ G•(V,Ψ) and a point
m ∈ G•(V,Ψ)M such that limt→0 λ(t).m ∈ G•(V,Ψ)(L⊕∇L⊕ (ι(L)⊥/ι(L))).

Proof. Since ι(L) ⊂ V is isotropic, for every i ∈ Q0 we can choose a basis of
ι(L)i ⊂ Vi, extend it to a basis of ι(L)⊥i ⊂ Vi and then complete it to a basis
Bi of Vi so that the ε-form Ψ =

∑
i∈Q0

Ψi : V → ∇V is represented in the basis
B = ∪i∈Q0

Bi of V and the dual basis B∗ of ∇V by the matrices

Ψi =

 0 0 ε1
0 ϕi 0
1 0

 : Li ⊕ Yi ⊕∇Li → ∇Li ⊕∇Yi ⊕ Li,
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where Yi denotes the span of the basis elements of ι(L)⊥i which do not belong to
ι(L)i and ϕ = ⊕iϕi is the induced ε-form on Y = ⊕Yi.
Let α : i→ j be an arrow of Q. The linear map Mα : Li⊕Yi⊕∇Li → Lj⊕Yj⊕∇Lj
is represented in the basis B by a block matrix of the form

Mα =

 Lα να ξα
0 Yα µα
0 0 ∇Lα


where Y = ι(L)⊥/ι(L) (there are zeros below the diagonal because both ι(L) and
ι(L)⊥ are subrepresentations of M). For t ∈ C∗, let λ(t) = (λ(t)i)i∈Q0

∈ GL•(V )
be the one-parameter subgroup whose i-th component λ(t)i : Li ⊕ Yi ⊕ ∇Li →
Li ⊕ Yi ⊕∇Li is represented in the basis Bi by the block matrix

λ(t)i =

 t1 0 0
0 1 0
0 0 t−11

 .

An immediate calculation shows that ∇λ(t)Ψλ(t) = Ψ and hence λ(t) is a subgroup
of G•(V,Ψ). Let M(t) := λ(t) ·M , i.e.

M(t)α = λ(t)jMαλ(t)−1
i =

 Lα tνα t2ξα
0 Yα tµα
0 0 ∇Lα


Thus, M(t) ∈ G•(V,Ψ)M for t 6= 0 and limt→0M(t) ∼= L⊕ Y ⊕∇L. �

Definition 3.2. Let M,N ∈ R(A, V )ε

(3.3) M ≤εExt N
ks def +3 There exist ε− representations M1, · · · ,Mk ∈ R(A, V )ε

such that for every i = 2, · · · , k there exists a short

exact sequence 0→ Li →Mi−1 → Vi → 0

such that M1 = M,Mk = N,Li is isotropic in Mi−1

and Mi ' Li ⊕∇Li ⊕ L⊥i /Li.

Theorem 3.1 implies at once:

Corollary 3.3. ≤εExt
+3 ≤εdeg .

The opposite implication is not true in general, since an ε-representation could
degenerate to an indecomposable ε-representation of type (I) (see [9]). This is not
the case for symmetric quivers of type A, though, as we show in Section 7.

4. Degenerations and Bongartz’s cancellation theorem

In this section we recall the definition of the degeneration, the Hom, and the Ext
order on the variety of A-representations of a fixed dimension vector. Then we
recall Bongartz’s cancellation theorem and how to use it to show that these three
orders coincide for Dynkin quivers. This argument is analogous to the argument
that we will use to prove the main theorem in Section 7.

4.1. Degeneration, Hom and Ext order. Let A be a quiver algebra. Given
two A-representations X and Y we use the notation [X,Y ] := dim HomA(X,Y )
and [X,Y ]1 := dim Ext1

A(X,Y ). We denote by ind(A) the set of isoclasses of

indecomposable A-modules. Let d ∈ ZQ0

≥0 be a dimension vector and let V be a
Q0-graded complex vector space of dimension vector d.
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• The degeneration order ≤deg on R(A, V ) is defined by

M ≤deg N ks
def +3 N ∈ GL•(V )M.

• The Hom-order ≤Hom on R(A, V ) is defined by

M ≤Hom N ks
def +3 [M,E] ≤ [N,E] for every E ∈ ind(A).

• The Ext-order ≤Ext on R(A, V ) is defined in (3.1).

These orders were first considered by Abeasis-Del Fra for quivers of type A [1, 2],
and then extended to general quiver algebras by Riedtmann [22], Bongartz [7] and
Zwara [27]. It is well-known that

≤Ext
+3 ≤deg

+3 ≤Hom

(see [22, Proposition 2.1], [7, Lemma 1.1]). It is a remarkable fact that these
three orders are equivalent for every algebra of finite representation type whose
indecomposables are all rigid [27, Theorem 2]. In particular, they are all equivalent
for Dynkin quivers. In the subsequent Section 4.3 we recall the proof of this result.

4.2. Generic quotients and generic kernels. We recall from [7, Section 2.3]
the crucial definition of generic quotients and of generic kernels.

Let M ∈ R(A, V ). Let ι : L ↪→M be a subrepresentation of dimension vector e.

For every i ∈ Q0, we fix a basis {v(i)
1 , · · · , v(i)

ei } of the vector subspace ι(L)i ⊆ Vi
and extend it to a basis Bi of Vi. With this choice we identify Ei = End(Vi) with
the vector space of di×di-matrices and GL•(V ) ⊂ E = ⊕i∈Q0

Ei as the open subset
of tuples of invertible matrices. Moreover, M = (Mα)α is represented in these bases

as a collection of 2×2 upper triangular block matrices of the form

(
Lα ?

0 ?

)
. Let

G(L,M) ⊂ GL•(V ) be the set of all collections g = (gi)i∈Q0 of invertible matrices
such that for every arrow α : i → j of Q the matrix g−1

j Mαgi is a 2 × 2 upper

triangular block matrix having Lα as upper left block. Let U = ι(L) ⊂ V and
let us consider the representation variety R(Q, V/U). Bongartz considers the map
ϕ : G(L,M) → R(Q, V/U) which associates to g the collection Q = (Qα)α of
matrices such that Qα is the lower right block of g−1

j Mαgi. The image of ϕ is the

set of all possible quotients of M by L and it is denoted by Quot(L,M).

Lemma 4.1. Quot(L,M) is an irreducible, constructible subset of R(Q, V/U)
which is stable by the action of GL•(V/U).

Proof. Given fi ∈ Ei we denote by f i the matrix consisting of the first ei columns
of fi. Then Bongartz points out that g ∈ G(L,M) if and only if Mαgs(α) =
gt(α)Lα. These equations are linear in the entries of the matrices g and hence of g.
Thus G(L,M) is an open and dense subset of the vector subspace E(L,M) ⊂ E
consisting of all f = (fi) such that Mαfs(α) = ft(α)Lα. In particular, G(L,M) is
an irreducible locally closed set. Thus, Quot(L,M) is a constructible irreducible
set, by Chevalley’s theorem. The fact that it is stable by base change is obvious,
since if Q is a quotient of M by L and Q′ ' Q then Q′ is a quotient of M by L. �

A quotient Q of M by L is called a generic quotient of M by L if its orbit is dense
in Quot(L,M). In this case, a monomorphism ι : L ↪→M such that Q 'M/ι(L) is
called a generic embedding of L into M . Of course, generic quotients and generic
embeddings might not exist. They exist in case A has finite representation type.
In particular, they exists in case A is the path algebra of a Dynkin quiver.

Dually, let π : M // // Q be a quotient of dimension vector d− e. Then as

above one constructs the set of all possible kernels of an epimorphism from M to
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Q and shows that this set is a construcible irreducible subset of R(Q,W ), stable
by base change, for an appropriate vector subspace W of V of dimension vector e.
The generic orbit in this set is called the generic kernel of M onto Q.

4.3. The cancellation theorem of Bongartz. We recall the famous “cancella-
tion theorem” of Bongartz [7, Theorem 2.4] and how to use it to prove the equiva-
lence of the three orders of Subsection 4.1 for Dynkin quivers.

Theorem 4.2 (Cancellation theorem). [7, Theorem 2.4] Let M,N ∈ R(A, V ) such
that M ≤deg N .

(i) Let L ∈ Rep(Q) such that [L,M ] = [L,N ]. Then if L embeds into N , L
embeds into M , too. In this case, if the generic quotient of M by L exists,
it degenerates to every quotient of N by L.

(ii) Let Q ∈ Rep(Q) such that [M,Q] = [N,Q]. Then if N surjects onto Q,
M surjects onto Q, too. In this case, if the generic kernel of M onto Q
exists, it degenerates to the kernel of every surjective map from N to Q.

A connected quiver Q is called a Dynkin quiver if it is an orientation of a simply-
laced Dynkin diagram of type A, D or E.

Corollary 4.3. Let Q be a Dynkin quiver and let A = kQ be its path algebra. Then
the three partial orders ≤Ext, ≤deg and ≤Hom are equivalent on R(A, V ), for all V .

Proof. Let M,N ∈ R(A, V ) such that M ≤deg N . Let us prove that M ≤Ext N
by induction on their total dimension. If the dimension is zero, there is nothing to
prove. Suppose that the dimension is greater than zero. Since Q is Dynkin, its path
algebra A is representation-directed ([6, Lemma IX.1.1 and Definition IX.3.2]). In
particular, there exists a partial order � on ind(A) defined by L � E if there is
a sequence of non-zero non-isomorphisms L = L(1) → L(2) → · · · → L(h) = E
for some L(i) ∈ ind(A). Let L be a �-minimal indecomposable direct summand
of N . Then [L,N ]1 = 0. By upper semicontinuity, we have [L,M ]1 ≤ [L,N ]1 = 0
which implies, using the homological interpretation (5.1) of the Euler-Ringel-form
for hereditary algebras, that [L,N ] = [L,M ]. By Theorem 4.2, L embeds into M .
Let Q be the generic quotient of M by L. Then Q ≤deg N where N is the direct

complement of L in N . By induction we get Q ≤Ext N . Since there is a short exact
sequence 0→ L→M → Q→ 0 we get M ≤Ext L⊕Q ≤Ext L⊕N = N , as claimed.
The proof of the implication ≤Hom

+3≤deg is given in [7, Proposition 3.2] for
representation-directed algebras and it does not seem to simplify when restricted
to Dynkin quivers. �

5. Quivers of type A

In this section we recall with proofs some useful features of the representation
theory and the Auslander-Reiten theory of quivers of type A. In the last subsection,
Proposition 5.18 contains a description of the generic quotients by indecomposables
which turns out to be very useful in the proof of Theorem 7.1. Throughout the
section, Q denotes a quiver of type An and A denotes its complex path algebra.

5.1. Representation Theory. We denote the category of finite-dimensional com-
plex Q-representations by Rep(Q). The category Rep(Q) is abelian and Krull-
Schmidt. The set ind(Q) of isoclasses of indecomposable Q–representations is fi-
nite by Gabriel’s Theorem and the dimension vector induces a bijection between
ind(Q) and the positive roots of the root system of type An. We denote by αi,

i = 1, · · · , n the simple roots. A positive root αi,j =
∑j
k=i αk, 1 ≤ i ≤ j ≤ n,

is the dimension vector of the indecomposable Q-representation that we denote by
Ui,j , here (Ui,j)k = C for i ≤ k ≤ j and every linear map between two non-zero



16 MAGDALENA BOOS, GIOVANNI CERULLI IRELLI

vector spaces is an isomorphism. Given a vertex j ∈ Q0, we denote by Sj = Uj,j
the corresponding simple representation, by Pj its projective cover, and by Ij its
injective envelope. More concretely, Pj = Ut1,t2 and Ij = Us1,s2 where s1, s2, t1, t2
are the vertices (possibly equal to j) such that there are maximal directed paths
j //tk and sk //j in Q (i.e. tk is either equal to j or it is a sink of Q and
sk is either equal to j or it is a source of Q), for k = 1, 2. The radical of Pi, i.e.
the kernel of the map Pi // //Si , is the direct sum of at most two indecomposable
projectives rad(Pi) = Pj1 ⊕ Pj2 where j1 and j2 are the terminal vertices of the
arrows of Q starting from i (there can be at most two).

An indecomposable Q–representation L is thin, meaning that dimLj = [Pj , L] =
[L, Ij ] ≤ 1 for every vertex j ∈ Q0.

Every M ∈ Rep(Q) admits a canonical projective resolution, or standard reso-
lution (see e.g. [12, page 7])

0 //⊕
α:i→j∈Q1

P dij
//⊕

i∈Q0
P dii

// M // 0

where d = dimM is the dimension vector of M . As a consequence, Rep(Q) is
hereditary, i.e. Exti(−,−) = 0 for i ≥ 2 or equivalently the subrepresentations
of a projective are projective. Moreover, for every M,N ∈ Rep(Q) the following
formula holds (apply Hom(−, N) to the standard resolution of M):

(5.1) [M,N ]− [M,N ]1 = 〈dimM,dimN〉Q.
Here, for e,d ∈ ZQ0 the Ringel-Euler form 〈−,−〉Q : ZQ0 × ZQ0 → Z is defined as
〈e,d〉Q =

∑
i∈Q0

eidi −
∑
α:i→j∈Q1

eidj . We notice that

(5.2) dk = 〈d,dim Ik〉Q = 〈dimPk,d〉Q.
Since ind(Q) is finite, for every dimension vector d, the representation variety Rd

contains a dense G•d-orbit. A point of this orbit is called a generic Q-representation
of dimension vector d. Let M be such a point. Then the dimension of its orbit
equals the dimension of Rd which is

∑
i→j∈Q1

didj ; the dimension of this orbit is

also equal to dim G•d−dim Aut(M) =
∑
i∈Q0

d2
i − [M,M ]. Thus, by (5.1) we see

that M is a generic representation if and only if [M,M ]1 = 0. A Q-representation
is called rigid if [M,M ]1 = 0. Thus M is generic if and only if it is rigid.

The Auslander-Reiten translate τ ' DExt1(−, A) is a functor in Rep(Q), where
D = Hom(−, k) denotes the standard k-duality. It has a quasi-inverse τ− '
Ext1(D(−),A) (see [12, Section 6]). In particular, τP and τ−I are zero for every
projective P and every injective I. For L ∈ ind(Q) not projective, τL is indecom-
posable and τ−τL ' L. For E ∈ ind(Q) not injective, τ−E is indecomposable and
ττ−E ' E. In [24, Section 3.1.2] several methods to compute τL and τ−L are
collected. The following Auslander-Reiten formulas hold (see e.g [12, Lemma 6.1]):

(5.3) [L,E]1 = [E, τL] = [τ−E,L].

For every L ∈ ind(Q) there exist two vertices i, j ∈ Q0 and two non-negative
integers s, t ≥ 0 such that L = τ−sPi = τ tIj .

A path in Rep(Q) is a sequence

(5.4) L1
f1 // L2

f2 // · · ·
fk // Lk+1

of non-zero non-isomorphisms between the indecomposable Q–representations L1,
L2, · · · , Lk+1 (notice that the composition of these maps can be zero). A path (5.4)
is cyclic if L1 = Lk. It is well-known that Rep(Q) is representation-directed (see
([6, Lemma IX.1.1 and Definition IX.3.2]), i.e. it does not contain cyclic paths.

Lemma 5.1. Let L,E ∈ ind(Q). Then

(i) [L,E] ≤ 1 and [L,E]1 ≤ 1
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(ii) [L,E][L,E]1 = 0.

Proof. Let s ≥ 0 and i ∈ Q0 such that L = τ−sPi. For (i), we notice that
[L,E] = [Pi, τ

sE] ≤ 1, since τsE is indecomposable and hence thin. The second
inequality follows from the Auslander formulas (5.3).

To prove (ii) suppose that [L,E][L,E]1 6= 0 and let 0 → E → F → L → 0 be
a non-split short exact sequence. Since [L,E] 6= 0, we get a cyclic path L → E →
Fi → L (where Fi is an indecomposable direct summand of F ) contradicting the
fact that Rep(Q) is representation-directed. �

Lemma 5.2. Let L,E ∈ ind(Q) and let f : L→ E be a non-zero homomorphism.
Then the image of f is indecomposable.

Proof. Apply Hom(L,−) to the short exact sequence 0 //Im(f) //E //Coker(f) //0
and get [L, Im(f)] = [L,E] = 1. Then apply Hom(−, Im(f)) to the short exact se-
quence 0 //Ker(f) //L //Im(f) //0 and get [Im(f), Im(f)] = 1, proving that Im(f)
is indecomposable. �

Remark 5.3. Lemma 5.2 is not true for other Dynkin quivers.

Lemma 5.4. Let L,E ∈ ind(Q) such that [E,L]1 6= 0. Let

ξ : 0 // L
ι // F

p // E // 0

be a non-split short exact sequence. Then the following properties hold for F :

(i) F is rigid and it has at most two indecomposable direct summands.
(ii) F is indecomposable if and only if [L,E] = 0.

(iii) F is decomposable if and only if [L,E] = 1. In this case [F, F ] = 2.
(iv) [F,L]1 = [E,F ]1 = 0

Proof. Since [L,L]1 = 0, by applying the covariant functor Hom(L,−) to ξ we get
the short exact sequence

(5.5) 0→ Hom(L,L)→ Hom(L,F )→ Hom(L,E)→ 0

and hence [L,F ] = [L,L] + [L,E] = 1 + [L,E] ≤ 2 (by Lemma 5.1). Since ξ is not
split, and L and E are indecomposables, we see that necessarily [L,Fi] 6= 0 and
[Fi, E] 6= 0 for every indecomposable direct summand Fi of F . Thus F has at most
two indecomposable direct summands. Moreover, F is indecomposable if and only
if [L,F ] = 1 if and only if [L,E] = 0. If F is indecomposable, it is rigid.

If F is not indecomposable, then [L,F ] = 2, [L,E] = 1 and F is the direct sum
of two indecomposables, say F1 and F2. Let us show that F1 6' F2, [F1, F2] =
[F2, F1] = 0 and [F, F ]1 = 0. Since [L,F1] = 1, then [F1, L] = 0 because F1 6' L
and Rep(Q) is representation-directed. Thus, when we apply Hom(F1,−) to ξ
we get [F1, F ] ≤ [F1, E] = 1 and hence [F1, F ] = [F1, F1] = 1 and [F1, F2] = 0.
Moreover, [F1, F ]1 = [F1, L]1 + [F1, E]1. Apply Hom(−, L) to ξ and get the short
exact sequence

0→ Hom(L,L)→ Ext1(E,L)→ Ext1(F,L)→ 0.

Since [L,L] = [E,L]1 = 1, we get [F,L]1 = 0. Since [F1, E] = [F2, E] = 1 then
[F,E]1 = 0 by Lemma 5.1. We conclude that F is rigid. To get [E,F ]1 = 0 apply
Hom(E,−) to ξ and conclude as above. �
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5.2. Auslander-Reiten Theory. In this subsection we recall the definition of
the Auslander-Reiten quiver of Q and how to use it to get a basis of the Hom and
Ext-space between two indecomposable Q-representations.

Let L be an indecomposable non-projective Q–representation. Since [L, τL]1 =
[τL, τL] = [L,L] = 1, there exists a non-split short exact sequence

(5.6) ξ : 0 // τL
f // X

g // L // 0.

This sequence has the remarkable property that it is almost split, or an AR-
sequence; this means that 1) it is not split, 2) for every E ∈ ind(Q), E 6' L,
the induced map g∗ : Hom(E,X) → Hom(E,L) is surjective and 3) for every
E′ ∈ ind(Q), E′ 6' τL, the induced map f∗ : Hom(X,E′)→ Hom(τL,E′) is surjec-
tive. These almost split properties follow at once from Lemma 5.1; indeed, by the
AR-formulas (5.3), [E, τL]1 = [τL, τE] and [L,E′]1 = [E′, τL]. Dually, for every
non-injective L ∈ ind(Q) there exists an almost split sequence starting from L:

(5.7) ξ : 0 // L
f // X

g // τ−L // 0.

The Auslander-Reiten quiver or AR-quiver of Rep(Q) is a translation quiver [23]
denoted by ΓQ and defined as follows: It has ind(Q) as set of vertices; thus a vertex
of ΓQ denotes an isoclass of an indecomposable Q-representation; with abuse of
notation, we denote a vertex of ΓQ and an element of the corresponding isoclass with
the same symbol. The arrows of ΓQ are defined as follows: given Xi, L ∈ ind(Q)
there is an arrow Xi → L in ΓQ if Xi is a direct summand of the middle term of
the almost sequence ending in L in case L is non-projective, or, if L is projective,
Xi is a direct summand of the radical of L. Thus, an arrow Xi → L corresponds
to a homomorphism from Xi to L which by Lemma 5.1 is unique, up to non-
zero-scalar multiples. Finally, the translation is given by the functor τ ; it sends a
non-projective vertex L to the non-injective vertex τL and an arrow f : E → L
between non-projectives to the arrow τf : τE → τL between non-injectives.

We always use the standard convention to depict ΓQ so that the translation is
represented by a horizontal dashed arrow which points from right to left, and the
arrows of ΓQ either point towards the north-east or the south-east.

There are several methods to compute ΓQ (see e.g. [24, Section 3.1]). One is the
so-called knitting algorithm which works as follows: the subquiver of ΓQ supported
on the indecomposable projectives is a copy of Qop, with Pi put at vertex i; starting
from this one inductively knits by using the formula dim τ−L = dimX − dimL
to get the vertex τ−L knowing X and L; the algorithm stops when dimX−dimL
is not a dimension vector. We choose to draw P1 at the top in order to fix a unique
way to depict ΓQ. Let us sketch three examples.

Example 5.5. Let Q =
→
A3= 1 //2 //3. Then ΓQ is

P1 = I3

��
P2

??

��

I2

��

τoo

P3 = S3

??

S2

??

τoo I1 = S1
τoo
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Example 5.6. Let Q be
1
��

3
����

2 4
. Its AR-quiver ΓQ is given by

P1 = U1,2

��

U3,4 = I4
τoo

��
P2 = U2,2

��

??

U1,4
τoo

��

??

U3,3 = I3
τoo

P3 = U2,4

��

??

U1,3 = I2
τoo

��

??

P4 = U4,4

??

U2,3
τoo

??

U1,1 = I1
τoo

Example 5.7. Let Q be

2
�� ��

1 3
��

5
��

4

. Its AR-quiver ΓQ is given by

P1 = U1,1

��

U2,4

��

τoo U5,5 = I5
τoo

P2 = U1,4

��

??

U2,5 = I4

��

??

τoo

P3 = U3,4

��

??

U1,5

��

??

τoo U2,3 = I3

��

τoo

P4 = U4,4

��

??

U3,5

��

??

τoo U1,3

��

??

τoo U2,2 = I2
τoo

P5 = U4,5

??

U3,3

??

τoo U1,2 = I1

??

τoo

Paths and homomorphisms. A path of length k in ΓQ is a directed path

(5.8) p : L1
f1 // L2

f2 // · · ·
fk // Lk+1

of the quiver ΓQ. For k = 0 this is the trivial path from L1 to itself. We identify
this path with the path of Rep(Q) obtained by choosing a representative of each
arrow fi. If L1 is non-projective, then the translation τ induces the translated path

τp : τL1 (τf1) // τL2 (τf2) // · · · (τfk) // τLk+1.

We say that a path p in ΓQ as (5.8) factors through an almost split sequence if
k ≥ 2 and there exists an index 1 ≤ i ≤ k − 1 such that Li = τLi+2.

A zero-relation is a path in ΓQ that factors through an almost split sequence
whose middle term is indecomposable. By Lemma 5.4, a zero-relation is zero.

Lemma 5.8. Let E,L ∈ ind(Q) and let p be a path from E to L in ΓQ which
factors through an almost split sequence. Then L is not projective and there exists
a path from E to τL. In particular, there exists a path from E to every direct
summand of the middle term of the almost split sequence ending in L.

Proof. To fix notation, we assume that p is given by (5.8) with E = L1 and L =
Lk+1 and let i be an index such that Li = τLi+2. Then Li+2 is not projective and
there is an induced path from Li+2 to L. Thus there is the translated path from
Li = τLi+2 to τL and hence from E to τL. The statement is now obvious. �

We say that two vertices E and L of ΓQ have distance dist(E,L) := d if there exists
a path in ΓQ from E to L of length d. Since every path from τL to L has length
two, we see that this notion is well-defined.
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Proposition 5.9. Let E,L ∈ ind(Q). Then [E,L] = 0 if and only if either there
are no paths in ΓQ from E to L or there exists a zero-relation from E to L. If
[E,L] 6= 0 then every path from E to L is a basis of Hom(E,L).

Proof. We fix E ∈ ind(Q) and let L vary in ind(Q). If L ' E then [E,L] = 1
and there is a unique (trivial) path from E to L. Let us assume that L 6' E.
For L ∈ ind(Q) let dL = max{dist(Pi, L)| i ∈ Q0} be the maximal distance from
an indecomposable projective to L. We proceed by induction on dL ≥ 0. For
simplicity, in this proof, by a path we mean a path in ΓQ.

Suppose, first, that L = Pi is projective (this case includes the base of induction).
Then the only paths ending in L start from a projective. Thus if E is not projective,
[E,L] = 0 and there are no paths from E to L. If E = Pj is projective, then
[E,L] = 1 if and only if the vertices i and j of Q are joined by a directed path
i //j of Q. In this case, there is a unique path from Pj to Pi and by Lemma 5.8
it is not a zero-relation. This proves the lemma in the case when L is projective.

Let us assume that L ∈ ind(Q) is not projective, in particular dL ≥ 1. Let us
consider the almost split sequence ξ (5.6) ending in L. In view of Lemma 5.4 either
its middle term X is indecomposable or it has two non-isomorphic direct summands
X = X1 ⊕X2. For simplicity, by a path from E to X we mean a path from E to
an indecomposable direct summand of X. We notice that dτL < dL and dXi < dL.
Since E 6' L, the almost split properties give

(5.9) [E,L] = [E,X]− [E, τL].

Moreover, again because E 6' L, every path from E to L factors through X. Clearly,
every path from E to X gives rise to a path from E to L. Thus, there are no paths
from E to L if and only if there are no paths from E to X. In this case, by induction,
[E,X] = 0 which by (5.9) implies [E,L] = 0.

We assume from now on that there exists a path from E to L.
Let p be a zero-relation from E to L and let us show that [E,L] = 0. Let X1

be the indecomposable direct summand of X such that p factors through X1. If
X = X1 then [E,X] ≤ 1, if not then [E,X1] = 0 by induction, since ξ is not
a zero-relation. In all cases we have that [E, τL] ≤ [E,X] ≤ 1. By Lemma 5.8
there exists a path from E to τL. If [E, τL] = 0 then by induction there exists a
zero-relation from E to τL; thus there exists a zero-relation from E to every direct
summand of X, and by induction [E,X] = 0. By (5.9), [E,L] = 0. If [E, τL] = 1,
then [E,X] = [E, τL] = 1 and by (5.9), [E,L] = 0.

If [E,L] = 0 then by (5.9), [E,X] = [E, τL] ∈ {0, 1}. If [E,X] = [E, τL] = 0
then by induction there is a zero-relation from E to X, and hence there is a zero-
relation from E to L, too. If [E,X] = [E, τL] = 1 then, by induction, there exists
a path p from E to τL. Moreover, either X is indecomposable or [E,X1] = 1 and
[E,X2] = 0. In the first case, ξ is a zero-relation and by composing with p, there
exists a zero-relation from E to L. In the second case, by composing with p, we
see that there exists a path from E to X2, and since [E,X2] = 0 there exists a
zero-relation from E to X2 and hence there exists a zero-relation from E to L, too.

If [E,L] = 1 then by (5.9) either [E,X] = 2 and [E, τL] = 1 or [E,X] = 1 and
[E, τL] = 0. In the first case every path from E to X is not a zero-relation and
hence the same holds for every path from E to L, since ξ is not a zero-relation. In
the second case, either X = X1 is indecomposable or [E,X1] = 1 and [E,X2] = 0.
Then there are no paths from E to τL; indeed, a zero-relation from E to τL
induces a zero-relation from E to X1, contradicting [E,X1] = 1; in particular, by
Lemma 5.8, there are no paths from E to X2. Thus, every path from E to L factors
through X1, does not factor through τL and therefore it is not a zero-relation. �
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Lemma 5.10. Let L1, L2, L3 ∈ ind(Q) such that [L1, L2] = [L2, L3] = [L1, L3] = 1.
Then the composition map

Hom(L1, L2)×Hom(L2, L3)→ Hom(L1, L3) : (f, g) 7→ g ◦ f
is surjective.

Proof. Let p21 be a path from L1 to L2 and let p32 be a path from L2 to L3

in ΓQ. By Proposition 5.9, p21 is a basis of Hom(L1, L2) and p32 is a basis of
Hom(L2, L3). The composite map p = p32 ◦ p21 is a path from L1 to L3 and again
by Proposition 5.9 is a basis of Hom(L1, L3). �

Corollary 5.11. Let L,E ∈ ind(Q), such that [L,E] = 1. Let s ≥ 1 be an integer
such that [L, τ−sE] = 1. Then [E, τ−sE] = 1 and the composition map

Hom(L,E)×Hom(E, τ−sE)→ Hom(L, τ−sE) : (f, g) 7→ g ◦ f
is surjective.

Proof. Let q be a path from L to E in ΓQ. Since τ−sE is on the right of E in ΓQ
there exists a path p from E to τ−sE in ΓQ. Then p ◦ q is a path from L to τ−sE.
If [E, τ−sE] = 0, then by Proposition 5.9, there exists a zero-relation p′ from E
to τ−sE. Then, the path p′ ◦ q would be a a zero-relation, too, contradicting the
hypothesis [L, τ−sE] = 1. The statement is then a consequence of Lemma 5.10. �

Remark 5.12. Corollary 5.11 is not true for other Dynkin quivers (e.g. [24, Page 94]).

For L ∈ ind(Q) the function dim Hom(L,−) : ind(Q) → Z≥0 is called a ham-
mock function in the terminology of [8]. The support of the hammock function
dim Hom(L,−) (or for brevity of Hom(L,−)) is the set of all E ∈ ind(Q) such
that [L,E] 6= 0; it is called a hammock. By using Proposition 5.9, Lemma 5.10
and Corollary 5.11 one can show that these hammocks are “convex”. They have a
typical rectangular shape, which explains the terminology. Dually, the same holds
for the function dim Hom(−, L) and for its support. In [24, Section 3.1.4] there are
many examples of these supports. We notice that this convexity property of the
hammocks is not true for other Dynkin quivers (see e.g. [24, Section 3.3.4.1]).

The relation �. Given E,L ∈ ind(Q), we say that E � L if there exists a path in
ΓQ which starts in E and ends in L. Since Rep(Q) is representation-directed the
relation � is a partial order. If [E,L] 6= 0, then E � L by Proposition 5.9. The
opposite is not necessarily true, since a path from E to L could be a zero-relation.

Sectional paths. A sectional path in ΓQ is a path in ΓQ which does not factor
through an almost split sequence.

Lemma 5.13. Let L,E ∈ ind(Q). The following are equivalent:

(i) There is a sectional path from L to E;
(ii) [L,E] = 1 and there is a unique path from L to E in ΓQ;

(iii) [L,E] = 1 and [E,L]1 = [L, τE] = 0.

Proof. The implication (i) +3(ii) follows from Proposition 5.9 by induction on the

length of a sectional path. To prove (ii) +3(iii) let us suppose, for a contradic-
tion, that [L, τE] = [L,E] = 1; then by Corollary 5.11, [τE,E] = 1 and thus by
Lemma 5.4 the almost split sequence ending in E has two indecomposable middle
terms. It follows that there are at least two paths from L to E. To prove (iii) +3(i)
let p be a path from L to E and suppose for a contradiction that p factors through
an almost split sequence. Then by Lemma 5.8 there is a path from L to τE and
since [L, τE] = 0, by Proposition 5.9 there exists a zero-relation from L to τE.
Then there exists a zero-relation from L to E, too, against the hypothesis. �
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A sectional path in ΓQ can be directed either towards the north-east or the south-
east. We call the former an NE sectional path and the latter an SE sectional path.
Two consecutive sectional paths of ΓQ either form a sectional path (if they have
the same direction) or they form a broken line (if they have different directions).

In view of Lemma 5.13 (iii), if there is a sectional path from L to E then [E,L]1 =
0. It then follows from the Happel-Ringel Lemma [16, Lem. 4.1] that a sectional
path is either mono or epi. In particular if an arrow of a sectional path (5.8)
fi : Li → Li+1 is epi, then all the successive maps fi+1, · · · , fk must be epi, too.

Lemma 5.14. The cokernel of a sectional mono is a sectional epi and the kernel
of a sectional epi is a sectional mono. They form a broken line.

Proof. Let ξ : 0 // L p // E q // C // 0 be a short exact sequence such that
p is sectional mono. We apply Hom(L,−) to ξ and get [L,C] = 0, then we apply
Hom(−, C) and get [C,C] = [E,C]. We apply Hom(E,−) and get [E,C] = [E,E] =
1. Thus [C,C] = 1 and, hence, C is indecomposable. By applying Hom(−, E), we
get [C,E]1 = 0. Thus q is a sectional epi by Lemma 5.13. If q is sectional epi, by
dual arguments one shows that L is indecomposable and p is sectional mono. The
last statement is an immediate consequence of Lemma 5.13. �

Remark 5.15. Lemma 5.14 is not true for other Dynkin quivers.

The next lemma describes the position in ΓQ of the cokernel of a sectional mono
and of the kernel of a sectional epi.

Lemma 5.16. Let p : L // E be a sectional path. Then

(i) p is mono if and only if there exists a sectional path which starts from E
and contains a vertex that does not lie in the support of Hom(L,−). The
cokernel of p is the �-minimal vertex of this sectional path that does not
lie in the support of Hom(L,−).

(ii) p is epi if and only if there exists a sectional path which ends in L and
contains a vertex that does not lie in the support of Hom(−, E). The kernel
of p is the �-maximal vertex of this sectional path that does not lie in the
support of Hom(−, E).

Proof. We prove (i). The proof of (ii) is dual. If p is mono then by Lemma 5.14
there is a sectional path from E to its cokernel C, and [L,C] = 0. It follows that C
does not lie in the support of Hom(L,−). Since, [L, τC] = [C,L]1 = 1, τC lies in
the support of Hom(L,−). Let X be the middle term of the almost split sequence
ending in C. Then, since [L,C] = 0, we have [L,X] = [L, τC] = 1. Thus there exists
an indecomposable direct summand of X which lies in the support of Hom(L,−).
This shows that C is �-minimal among those vertices which do not belong to the
support of Hom(L,−). Viceversa if there exists a sectional path starting from E
which contains a vertex D which do not belong to the support of Hom(L,−), let
C be the �-minimal vertex of this sectional path with this property. Let X be the
middle term of the almost split sequence ending in C. Then [L, τC] = [L,X] = 1.
By the AR-formula, it follows that [C,L]1 = 1. Since [L,C] = 0, the middle term
E′ of the non-split short exact sequence ξ ∈ Ext1(C,L) is indecomposable and by
Lemma 5.4, [L,E′] = 1 = [E′, C] and [L,E′]1 = 0 = [E′, C]1. By Lemma 5.13,
there is a sectional path from L to E′ and from E′ to C. It follows that E′ = E. �

Rectangles and extensions. Let us consider two subquivers of ΓQ of the form:
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(5.10)

F1 q2
  
E

L

p1

==

p2   
F2

q1

==

F
q

  
E

L

p

AA

where p1, p2, q1, q2, p and q are sectional paths, q = coker(p) and p = ker(q)
(compare with Lemma 5.16). The subquiver on the left is called a non-degenerate
rectangle of ΓQ and the one on the right is called a degenerate rectangle of ΓQ.

By a rectangle from L to E of ΓQ we mean either a non-degenerate or a de-
generate rectangle shown in (5.10). It is clear that there exists at most one such
rectangle.

Proposition 5.17. Let E,L ∈ ind(Q). Then [E,L]1 = 1 if and only if there exists
a rectangle in ΓQ from L to E. This rectangle is degenerate if and only if [L,E] = 0.

Proof. If [E,L]1 = 1, let ξ ∈ Ext1(E,L) be a basis and let F be its middle term.
Let Fi be an indecomposable direct summand of F . By Lemmas 5.4 and 5.13, the
non-zero morphisms L → Fi and Fi → E are sectional paths. Viceversa, we show
that a rectangle gives rise to a short exact sequence. If the rectangle is degenerate,
this is by definition. If there is a non-degenerate rectangle (5.10) from L to E in
ΓQ, then it does not contain zero-relations but it contains every path from L to E
and it contains τE. By Proposition 5.9, [L, τE] = [L,E] = 1. Thus [E,L]1 = 1.
Let ξ ∈ Ext1(E,L) be non-zero. By Lemma 5.4, the middle term of ξ has two non-
isomorphic direct summands F ′1 and F ′2. By Lemmas 5.4 and 5.13, the morphisms
L→ F ′i and F ′i → E are sectional. It follows that F ′1 = F1 and F ′2 = F2. �

Proposition 5.17 states that the rectangles of ΓQ are cartesian. As a consequence
we get the following useful properties of a non-degenerate rectangle (5.10):

opposite sides are either both mono or both epi;(5.11)

ker(pi) ' ker(qi) and coker(pi) ' coker(qi).(5.12)

Join and Meet. Recall the partial order �. Given E,L ∈ ind(Q) we denote

E ∨ L = sup{E,L} = min{F ∈ (ΓQ)0|E � F and L � F},
E ∧ L = inf{E,L} = max{F ∈ (ΓQ)0|F � E and F � L}.

Of course, E∨L and E∧L might not exist. If E∨L exists then it is the intersection
of two sectional paths, one starting from E and one starting from L; dually, if E∧L
exists then it is the intersection of two sectional paths, one ending in E and one
ending in L. They both exist if and only if there is a rectangle

E

$$
E ∨ L

E ∧ L

<<

$$
L

<<

in ΓQ.



24 MAGDALENA BOOS, GIOVANNI CERULLI IRELLI

5.3. Generic quotients. LetQ be a quiver of type A. Let L be an indecomposable
Q-representation and M be a Q-representation. In this section we give a necessary
and sufficient condition for L to embed into M and we specify the position of the
indecomposable direct summands of the generic quotient of M by L in ΓQ.

Suppose that [L,M ] 6= 0. Let T 0
1 , · · · , T 0

r be the �-minimal indecomposable
direct summands (one for each isoclass) of M which belong to the support of
Hom(L,−). We order them from top to bottom in ΓQ as depicted in Table 1

for r = 4. Let T 0 = ⊕ri=1T
0
i and let M̃ be the direct complement of T 0 in M so

that M = T 0 ⊕ M̃ . For every i = 1, · · · , r − 1 let T 1
i = T 0

i ∨ T 0
i+1. We also define

T 1
0 and T 1

r as follows: if there is an NE sectional path from L to T 0
1 we define T 1

0

to be zero, otherwise T 1
0 is the �-minimal vertex of the NE sectional path starting

from T 0
1 not belonging to the support of Hom(L,−); similarly, T 1

r is zero if there
is an SE sectional path from L to T 0

r and otherwise it is the �-minimal vertex of
the SE sectional path starting from T 0

r not belonging to the support of Hom(L,−).
(Compare with Table 1.) Clearly, T 1

i might not exist. In case they all exist, we put
T 1 = ⊕ri=0T

1
i . By construction, using Proposition 5.17, one immediately sees that

T 0 and T 1 are rigid (see Remark 5.19). For i = 1, · · · , r we denote by L(i) and L(i)

the two indecomposables such that L(i) ∧ L(i) = L and L(i) ∨ L(i) = T 0
i . We place

L(1), · · · , L(r) in the same NE sectional path starting from L.

L

T 0
1

T 0
2

T 0
3

T 1
1

T 1
2

T 1
0

T 1
3

Hom(L,−)

T 0
4

T 1
4

L(1)

L(2)

L(3)

L(4)

L(1)

L(2)

L(3)

L(4)

Table 1. The generic quotient of M = T 0
1 ⊕ · · · ⊕ T 0

4 by L is
T 1

0 ⊕ · · · ⊕ T 1
4 . This picture represents a part of ΓQ containing the

support of Hom(L,−). Every side of every square represents an
arrow of ΓQ which points towards the north-east or the south-east.

Proposition 5.18. We retain all notations and objects introduced above. Then
L embeds into M if and only if T 1

i exists for every i = 0, · · · , r. In this case the

generic quotient of M by L is T 1 ⊕ M̃ .

Proof. We denote by M1, · · · ,MN the indecomposable direct summands of M ,
ordered so that Mi = T 0

i for i = 1, · · · , r. For a homomorphism f : L → M
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we denote by fk : L → Mk the induced homomorphism. Let f : L → M be a
homomorphism such that fk 6= 0 whenever [L,Mk] 6= 0. For every i = 1, · · · , r, let
ιi := fi : L→ T 0

i and set ι = (ι1, · · · , ιr)t : L→ T 0. We claim that there exists an
automorphism ` of M such that ` ◦ f = (ι, 0)t. Indeed, given two indices i 6= j such
that i ≤ r, fj 6= 0 and [Mi,Mj ] = 1, i.e. either Mi ' Mj or Mj is not �-minimal
in the support of Hom(L,−), then there is a homomorphism `ji : Mi → Mj and
by Lemma 5.1, up to a non-zero scalar factor, fj = `ji ◦ fi. We then define the
automorphism ` in the obvious way to get the claimed equality (` ◦ f)i = ιi for
1 ≤ i ≤ r and (` ◦ f)i = 0 for i > r.

Since f and ` ◦ f have the same quotient, f is a generic embedding of L into
M if and only if ι is a generic embedding of L into T 0 and in this case the generic

quotient is the direct sum of M̃ and the generic quotient of T 0 by L.
Since T 1 is rigid, it remains to prove that ι : L → T 0 is mono if and only if T 1

is defined, and in this case there exists a short exact sequence

(5.13) 0 // L
ι // T 0 π // T 1 // 0.

We notice that, for 1 ≤ i ≤ r − 1, T 1
i exists if and only if there exists a rectangle

from L(i) to T 1
i . By Proposition 5.17, this happens if and only if there exists a short

exact sequence 0→ L(i) → T 0
i ⊕ L(i+1) → T 1

i → 0. Moreover, by Lemma 5.16, T 1
0

and T 1
r exist if and only if the sectional paths L→ L(1) and L(r) → T 0

r are mono.
We write

dimT 0 − dimL =

r∑
i=0

(
dimT 0

i + dimL(i+1) − dimL(i)

)
with the convention that L(0) = L, T 0

0 and L(r+1) are zero. We show that T 1 is

defined if and only if dimT 0 − dimL is a dimension vector. In this case, it equals
dimT 1 by the discussion above. We put ti := dimT 0

i + dimL(i+1) − dimL(i).

Let us prove that if there exists an index j such that T 1
j does not exist then

dimT 0−dimL is not a dimension vector. The argument we use is slightly different
in the case when j = 0, and we include this case in the general discussion by
highlighting the differences in parentheses. The SE sectional path starting from T 0

j

(or the NE sectional path starting from L(1), if j = 0) terminates with an injective
I. The almost split sequence ending in I is not a zero-relation, because, otherwise,
I would not be in the support of Hom(L(j),−) and T 1

j would exist by Lemma 5.16.
Thus, there exists an indecomposable injective Ik and an NE arrow (or SE arrow
for j = 0) Ik → I in ΓQ. Then, [L(i), Ik] = 1 for every 0 ≤ i ≤ j, [L(i), Ik] = 0 for

every i > j and [T 0, Ik] = 0. By (5.2) we get that the k-th component of ti is

(ti)k =

{
−1 if i = j;
0 otherwise.

We conclude that dimT 0 − dimL is not a dimension vector, and hence L cannot
embed into T 0 and a fortiori into M .

Suppose that T 1 is defined. Then dimT 1 = dimT 0 − dimL. Obviously, L
embeds into L⊕ T 1 and [L,L⊕ T 1]1 = 0. Since T 0 is rigid, it is generic and hence
T 0 ≤deg L ⊕ T 1. By Bongartz’s Theorem 4.2 L embeds into T 0 and since T 1 is
rigid, T 1 is the generic quotient of T 0 by L, finishing the proof. �

Remark 5.19. By construction both T 0 and T 1 are Hom- and Ext-orthogonal and
T 0 ⊕ T 1 can be completed to a separating tilting object T of Rep(Q) whose in-
decomposable direct summands form a section of ΓQ (see [6] for the definitions).
Then L is a torsion-free module for T and the short exact sequence (5.13) is the
addT resolution of L.
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6. Symmetric quivers of type A

Let (Q, σ) be a symmetric quiver of type An. Let ε be +1 or −1. Let (V,Ψ)
be an ε-quadratic space for (Q, σ) of dimension vector d. We denote the variety
of Q-representations of dimension vector d either by R(A, V ) or by Rd and the
structure group by Gd. We denote by R(A, V )Ψ,ε ⊂ R(A, V ) the subvariety of
ε-representations. Sometimes, for simplicity of notation and in view of Remark 2.7,
we use the shorter notation Rεd ⊂ Rd for the subvariety R(A, V )Ψ,ε. By Gε

d we
denote the group of graded isometries. In this section we describe useful facts about
ε-representations of (Q, σ). The main results are Propositions 6.10, 6.12 and 6.17.
They are crucial in our proof of Theorem 7.1.

6.1. Split and non-split types. There are four possible types for the pair (Q, ε):
(Aodd,±1) and (Aeven,±1). The main difference between the four types arises in the
structure of their indecomposable ε–representations (see Section 2.8): only in types
(Aodd, 1) and (Aeven,−1), there are indecomposable ε-representations of type (I).
In the other types (Aodd,−1) and (Aeven, 1) the indecomposable ε-representations
are all of the form L ⊕∇L, for L ∈ ind(Q). This is due to the fact that the inde-
composable Q-representations are thin and a symplectic vector space must be even
dimensional, compare with [15, Proposition 3.6 and 3.8]. For this reason we write
that (Aodd,−1) and (Aeven, 1) are the split types while (Aodd, 1) and (Aeven,−1)
are the non-split types. Accordingly, we say that (Q, ε) is of split or non-split type.

In the next lemmas we use the notation introduced in (2.3).

Lemma 6.1. Let M ∈ Rep(Q) and let f ∈ Hom(M,∇M)ε∇. Then the image of
f is an ε–representation.

Proof. On Im(f) we define the bilinear form 〈f(x), f(y)〉 = f(x)(y). This is a
non-degenerate, σ-compatible ε-form on the Q0-graded vector space Im(f). �

Lemma 6.2. Let L ∈ ind(Q).

(i) In type Aodd, Hom(L,∇L) = Hom(L,∇L)∇.
(ii) In type Aeven, Hom(L,∇L) = Hom(L,∇L)−∇.

In other words, Hom(L,∇L)ε∇ is zero if (Q, ε) is of split type.

Proof. By Lemma 5.1, [L,∇L] ≤ 1. If [L,∇L] = 0, then there is nothing to prove.
If [L,∇L] = 1, let f : L → ∇L be a non-zero homomorphism. Suppose that
Hom(L,∇L) = Hom(L,∇L)ε∇ for some ε ∈ {+1,−1}. Then, by Lemma 5.2, the
image of f is indecomposable and by Lemma 6.1 it is an ε-representation. Thus
(Q, ε) must be of non-split type, i.e. ε = +1 for Aodd and ε = −1 for Aeven. �

6.2. Properties of the AR-quiver. We study properties of the Auslander-Reiten
quiver of Q in case (Q, σ) is a symmetric quiver of type An.

∇-invariant rectangles. By [15, Proposition 3.4], the self-duality ∇ fulfills

(6.1) ∇τ = τ−∇.

Thus, ∇ induces an involution of ΓQ which reverses the orientation of the arrows
and fixes a vertical middle line (compare with Examples 5.5, 5.6 and 5.7). The
fixed vertices and their direct sums are called ∇-invariants. For every L ∈ ind(Q),
there is an integer k, such that ∇L = τkL. Assume that [L,∇L] = 1 and L 6' ∇L.
Then ∇L = τ−kL for some k ≥ 1 and by Corollary 5.11, [∇L,L]1 = [L, τ∇L] = 1.
Then by Lemma 5.4 there exists a non-degenerate rectangle (actually a square) in
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ΓQ from L to ∇L whose middle vertices G1, G2 ∈ ind(Q) are ∇-invariants:

(6.2) G1 q1
##

L

p1 >>

p2   

∇L.

G2

q2

;;

This is called a ∇-invariant rectangle of ΓQ. It has the following property.

Lemma 6.3. Either q1 or q2 is mono.

Proof. Since G1 and G2 are ∇-invariants, q1 and q2 are non-zero scalar multiples
of ∇p1 and ∇p2, respectively. Thus, if q2 is epi, then p1 is epi by (5.11) and hence
∇p1 is mono by duality. It follows that q1 is mono. �

Corollary 6.4. Suppose that q1 : G1 → T is mono and let p : F // G1
// T be

a sectional path which factors through G1. Then p is mono.

The function δ. For every M,N ∈ Rd we consider the function δM,N : Rep(Q)→ Z
defined as δM,N (E) = [N,E]− [M,E]. This is a well-known additive function with
many useful properties (cf. [27]). One of them is that if E ∈ ind(Q) is non-
projective and F is the middle term of the almost split sequence ending in E,
then

(6.3) δM,N (E)− δM,N (F ) + δM,N (τE) = µ(N,E)− µ(M,E)

where µ(N,E) (resp. µ(M,E)) denotes the multiplicity of E as a direct summand
of N (resp. M). This follows directly from the almost split properties.

Lemma 6.5. Let M,N ∈ Rεd be two ε-representations. Then

(6.4) δM,N (E) = δM,N (τ∇E) = δM,N (∇τ−E)

for every E ∈ ind(Q).

Proof. We compute

δM,N (E) = [N,E]− [M,E]

= [N,E]1 − [M,E]1

= [τ−E,N ]− [τ−E,M ]

= [N,∇τ−E]− [M,∇τ−E]

= [N, τ∇E]− [M, τ∇E]. �

Definition 6.6. We say that F ∈ Rep(Q) is δ-fixed if F ' τ∇F .

Clearly, F is δ-fixed if and only if all its indecomposable direct summands are.

Example 6.7. For the quiver Q considered in Example 5.5, P2 is the only δ-fixed
indecomposable Q-representation. In Example 5.6 the δ-fixed indecomposables are
U4,3 and U1,3 and in Example 5.7 they are U3,5 and U1,4.

Lemma 6.8. Let F → G be an arrow of ΓQ. Then F is δ-fixed if and only if G is
∇-invariant.

Proof. Suppose that F is δ-fixed. If F is injective, then ∇F is projective and
hence F is, thus, not injective. Let 0 → F → G′ → τ−F → 0 be the almost split
sequence starting from F . Then τ−F ' ∇F and hence G′ is ∇-invariant. Since G is
an indecomposable direct summand of G′, it is ∇-invariant, too. Viceversa, suppose
that G is ∇-invariant. Then G is not projective. Let 0 → τG → F ′ → G → 0
be the almost split sequence ending in G. Then 0 → ∇G → ∇F ′ → ∇τG → 0 is
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the almost split sequence starting in ∇G = G. Since τ∇G = τG and τ∇τG = G,
necessarily, τ∇F ′ = F ′ and F ′ is δ-fixed. Since F is a direct summand of F ′, F is
δ-fixed, too. �

Lemma 6.9. There exists a ∇-invariant representation G ∈ ind(Q), such that
there is only one arrow in ΓQ ending in G.

Proof. Let ω be the unique source of Q such that the path ω //σ(ω) is equior-
iented. We claim that G = Uω,σ(ω) has the required property. Indeed, if G is
projective then its radical is indecomposable, since G has a simple socle. If G is
not projective there exists an arrow ω → j of Q which does not belong to the path
ω //σ(ω). Let k 6= ω be the source of Q such that there exists an equioriented
path k //j (if there is no such path, i.e. if j is not a sink, put k = j). Then
τG = Uk,j . Since [Uk,j , G] = 0 it follows from Lemma 5.4 that the middle term of
the almost split sequence ending in G is indecomposable (namely, it is Uk,σ(ω)). �

Proposition 6.10. Let (Q, ε) be of split type and let M,N ∈ Rεd. Then

(6.5) δM,N (F ) is even for every δ-fixed F.

Proof. We prove the statement for every indecomposable δ-fixed representation.
Let G ∈ ind(Q) be ∇-invariant and let 0→ τG→ F → G→ 0 be the almost split
sequence ending in G. By Lemma 6.5, δM,N (G) = δM,N (τG) and by (6.3) we get

(6.6) δM,N (F ) = 2δM,N (G)− µ(N,G) + µ(M,G).

Since M and N do not have ε-indecomposable direct summands of type (I) and
G is ∇-invariant, its multiplicity both in M and in N is even. We hence see
that δM,N (F ) is even. Let F1, · · · , Fk ∈ ind(Q) be the δ-invariant isoclasses, or-
dered from top to bottom in ΓQ. Then Fi ⊕ Fi+1 is the middle term of an al-
most split sequence ending in a ∇-invariant indecomposable representation, and
by (6.6), δM,N (Fi) and δM,N (Fi+1) have the same parity, for all i = 1, · · · , k − 1.
Thus, δM,N (F1), · · · , δM,N (Fk) have all the same parity. To conclude the proof it
is enough to show that one of them is even. By Lemma 6.9, either F1 or Fk is the
middle term of an almost split sequence ending in an indecomposable ∇-invariant
representation, and hence, by (6.6), either δM,N (F1) or δM,N (Fk) is even. �

6.3. Generic isotropic embeddings. We state and prove a surprising result that
says that under certain mild hypotheses, it is always possible to embed an indecom-
posable inside an ε–representation so that the embedding is isotropic and generic.
In the split types this is obvious since every embedding is isotropic:

Lemma 6.11. Let (Q, ε) be of split type. Let M ∈ R(A, V )Ψ,ε and L ∈ ind(Q).
Then every embedding of L into M is isotropic.

Proof. Let ι : L ↪→ M be a monomorphism. Then ∇ι ◦ Ψ ◦ ι ∈ Hom(L,∇L)ε∇ is
zero by Lemma 6.2. The statement is now a consequence of Corollary 2.9. �

In the non-split types the statement of Lemma 6.11 is not true (see Examples 6.13
and 6.14) and one needs to add extra hypotheses on L and M .

Proposition 6.12. Let (Q, ε) be of non-split type. Let M ∈ R(A, V )Ψ,ε be an
ε–representation and let L ∈ ind(Q) be an indecomposable subrepresentation of M .
Let ι : L ↪→M be a generic embedding with (generic) quotient Q. Assume that:

There is a surjective homomorphism Q // //∇L ;(6.7)

[L,K]1 = 0 where K is the generic kernel of Q // //∇L.(6.8)

Then there exists an automorphism g of M such that j = g ◦ ι is an isotropic
embedding of L into M . In particular, j is an isotropic and generic embedding.
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Proof. Since L is indecomposable, we have [L,∇L] ≤ 1 by Lemma 5.1.

If [L,∇L] = 0 then every embedding ι : L ↪→M is isotropic by Corollary 2.9.

Let us assume that [L,∇L] = 1. By Lemma 6.2 Hom(L,∇L) = Hom(L,∇L)ε∇ =
kϕ for a non-zero homomorphism ϕ = ε∇ϕ : L→ ∇L. We need to prove that there
exists an automorphism g of M such that j := g ◦ ι is isotropic, i.e. ∇j ◦Ψ ◦ j = 0.

Let Z be an indecomposable direct summand of M which is �-minimal in the
support of Hom(L,−). We say that Z is a split (resp. non-split) �-minimal direct
summand of M relatively to L if Z ⊕∇Z is (resp. is not) a direct summand of M .
Thus if Z is non-split then Z ' ∇Z, but the converse is not necessarily true: if
Z ' ∇Z and there is more than one copy of Z in M , then Z is split even if it is
∇-invariant (compare with example 6.16 below).

Let S (for “self-dual”) denote the direct sum of all the non-split �-minimal direct
summands of M relatively to L and let T 0 denote the direct sum of all the split �-
minimal direct summands of M relatively to L. Then M = S⊕T 0⊕∇T 0⊕M . By
Proposition 5.18, the generic quotient ofM by L has the the formQ = T 1⊕∇T 0⊕M
(here M̃ = ∇T 0⊕M). We write S = M(1)⊕ · · ·⊕M(s) and T 0 = T 0

s+1⊕ · · ·⊕T 0
N

as a sum of their indecomposable direct summands. Thus, we write M as a direct
sum of ε-representations as M = M(1)⊕· · ·⊕M(N)⊕M where M(k) = T 0

k ⊕∇T 0
k

for k = s+ 1, · · · , N . In view of Theorem 2.5 we can assume that Ψ is:

Ψ =

N⊕
k=1

Ψk ⊕Ψ : M(1)⊕ · · · ⊕M(N)⊕M → ∇M(1)⊕ · · · ⊕ ∇M(N)⊕∇M

where Ψk : M(k)→ ∇M(k) is a non-zero homomorphism for k = 1, · · · , s and

Ψk : M(k) = T 0
k ⊕∇T 0

k

 0 Id∇T0
k

εId
T0
k

0


// ∇T 0

k ⊕ T 0
k .

We denote by ιk : L→M(k) the component of ι along the direct summand M(k).
The generic embedding ι has hence the form

ι = (ι1, · · · , ιN , 0)t : L ↪→M(1)⊕ · · · ⊕M(N)⊕M

Let us discuss ∇ι◦Ψ◦ι. With the choice we made for the form, we have ∇ι◦Ψ◦ι =∑N
k=1∇ιk ◦ Ψk ◦ ιk. Every summand ∇ιk ◦ Ψk ◦ ιk is a multiple of ϕ. For k ≤ s,

M(k) is indecomposable and ∇-invariant, and thus ∇ιk ◦ Ψk ◦ ιk is non-zero by
Lemma 6.2. and the fact that [L,∇L] 6= 0.

For k > s we choose two homomorphisms jk : L→ T 0
k and `k : T 0

k → ∇T 0
k such that

jk is non-zero and `k is non-zero whenever possible or stated differently. (Notice
that `k can be chosen to be non-zero in case [L,∇T 0

k ] 6= 0 by Corollary 5.11.) We
can choose ιk = (jk, `k ◦ jk)t, since the generic quotient Q does not depend on `k.
By Lemma 6.2 and our assumption on ε, we get ∇ιk ◦ Ψk ◦ ιk = ∇jk ◦ `k ◦ jk +
ε∇jk ◦ ∇`k ◦ jk = 2∇jk ◦ `k ◦ jk. In particular, if [L,∇T 0

k ] = 0, or `k is chosen to
be zero, then ∇ιk ◦Ψk ◦ ιk is zero.

Let us reorder the direct summands M(k)’s of M so that ∇ιk ◦Ψk ◦ ιk is non-zero
for 1 ≤ k ≤ h and it is zero for k > h.

If h = 0 then ∇ι ◦ ι is zero and thus ι(L) is isotropic.

Assume that h ≥ 1. For every k = 1, · · · , h there exists a non-zero complex number
xk such that ∇ιk ◦Ψk ◦ ιk = xkϕ. In particular we get

∇ι ◦ ι = (x1 + · · ·+ xh)ϕ.
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If h > 1 then let (a1, · · · , ah) ∈ (C \ {0})h be a non-zero solution of the linear
equation x1 + · · · + xh = 0 (for example (1, 1, · · · , 1,−(h − 1))). Let g be the

automorphism of M which rescales the direct summand M(k) by
√

ak
xk

for k =

1, · · · , h and acts as the identity on all the other direct summands. Then j = g ◦ ι
is a generic embedding such that ∇j ◦ j = (a1 + · · · + ak)ϕ = 0 which is what we
wanted to prove. (We notice that in the case when h > 1 there is no need of the
hypotheses of the proposition.)

Now we discuss the case h = 1 which again splits up into two cases:

(i) S = M(1) is indecomposable and [L,∇T 0] = 0. We show that this case
contradicts our hypotheses. By hypothesis, there is a short exact sequence

0 // L // S ⊕ T 0 // T 1 // 0

such that the induced homomorphism Hom(S ⊕ T 0,∇L) → Hom(L,∇L)
is surjective (this is because ∇ι1 ◦ ι1 = x1ϕ is a basis of Hom(L,∇L)); it
follows that [T 1,∇L] = [T 0,∇L] = [L,∇T 0] = 0.

The generic quotient of M by L is Q = T 1 ⊕ ∇T 0 ⊕ M . By hy-

pothesis (6.7) there exists a surjective homomorphism Q // // ∇L with

generic kernel K; since [T1,∇L] = 0, T1 is a direct summand of K. More-
over, by the definition of T 0, and again because [T 1,∇L] = 0, we see
that ∇T 0 is the direct sum of all the indecomposable direct summands
of Q which are �-maximal in the support of Hom(−,∇L). By the dual
version of Proposition 5.18, we conclude that there is a surjective ho-

momorphism ∇T 0 // // ∇L and that if we denote by K its kernel, then

K = T 1⊕M⊕K. We claim that [L,K]1 6= 0. Indeed, we apply Hom(L,−)
to the short exact sequence

0 // K = T 1 ⊕K ⊕M // Q = T 1 ⊕∇T 0 ⊕M // ∇L // 0

and get that the induced map Hom(L,∇L) → Ext1(L,K) is injective.
Since [L,∇L] = 1, this contradicts hypothesis 6.8.

(ii) S is not present, [L, T 0
1⊕∇T 0

1 ] = 2 and [L, T 0
k⊕∇T 0

k ] = 1 for all 2 ≤ k ≤ N .
In this case we choose `1 = 0 and ι1 = (j1, 0)t : L → T 0

1 ⊕ ∇T 0
1 and get

that ∇ι ◦ ι = 0 without further hypotheses. �

Examples. The following two examples show that the hypotheses of Proposition 6.12
are necessary.

Example 6.13. Let Q be of type
→
An and let M = Ui,σ(i) be an indecomposable

ε–representation of type (I), for some vertex i ≤ n/2. Let L be a subrepresentation
of M such that [L,∇L] = 1, e.g. L = Uj,σ(i) for some i ≤ j ≤ n/2. Then the
quotient M/L does not surject onto ∇L (actually [M/L,∇L] = 0), contradicting
hypothesis (6.7). In this case L is not an isotropic subrepresentation of M .
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Example 6.14. Let Q be of type
→
A5. We consider L ∈ ind(Q) and the orthogonal

Q–representation M = S ⊕ T 0 ⊕∇T 0 given by

•
�� ��

∇T 0

??

�� ��

T 0

�� ��
∇T 1

??

�� ��

•

??

�� ��

T 1

�� ��
H

??

�� ��

L

??

�� ��

∇L

??

�� ��

•
�� ��

•

??

•

??

S

??

•

??

•

(the conclusion of this example applies in every situation where the mutual position
of the summands in the AR-quiver is similar to the above). Then, [L,M ] = 2, L
embeds into M , the generic quotient of M by L is Q = T 1 ⊕ ∇T 0 and there is a
surjective homomorphism p : Q // //∇T 0 // //∇L , thus hypothesis (6.7) is satisfied.
The kernel of p is K = T 1⊕H and thus [L,K]1 = 1 contradicting hypothesis (6.8).
In this case it is not true that a generic embedding of L into M is isotropic. To see
this, let us fix an orthogonal basis of M as follows

u
M = v1

// v2
// v3

// v4

v∗4 // v∗3 // v∗2 // v∗1

with 〈u, u〉 = 〈vi, v∗i 〉 = 〈v∗i , vi〉 = 1. Then

ι(L) = xu+ v∗2 // v∗1

for some x 6= 0 and thus 〈ι(L), ι(L)〉 = 〈xu, xu〉 = x2 6= 0, proving that ι(L) is
not isotropic. (If x = 0, the map is still an embedding, it is isotropic but it is not
generic, since the quotient is ∇H ⊕ S ⊕∇T 0 which is a degeneration of Q.)

Let us illustrate the proof of Proposition 6.12 in an example.

Example 6.15. Let us consider the following indecomposable representation L and

the following orthogonal representation M = S ⊕ T 0⊕∇T 0 of a quiver of type
→
A5:

S

�� �� ∇ιS

��

∇T 1

??

�� ��

T 1

�� ��
L

??

ιT0

�� ��

ιS

44

•

??

�� ��

∇L

�� ��
•

??

�� ��

T 0

??

` //

�� ��

∇T 0
∇ιT0

??

�� ��

•

�� ��
•

??

•

??

•

??

•

??

•

We choose non-zero homomorphisms ιS , ιT 0 and ` as depicted. Then the homo-
morphism ι = (ιS , ιT 0 , ` ◦ ιT 0)t : L → S ⊕ T 0 ⊕∇T 0 is a generic embedding. The
quotient is Q = T 1 ⊕∇T 0. Then ∇ι ◦ ι = ∇ιS ◦ ιS + 2∇ιT 0 ◦ ` ◦ ιT 0 . There exists
a non-zero complex number x such that ∇ιS ◦ ιS = x(2∇ιT 0 ◦ ` ◦ ιT 0). We define

jT 0 :=
√
−x√
2
ιT 0 and j := (ιS , jT 0 , ` ◦ jT 0)t : L→M . Then j is a generic embedding

of L into M and ∇j ◦ j = 0.
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Example 6.16. Let Q : 1 → 2 → 3 be of type
−→
A 3. Its AR-quiver is shown in

Example 5.5. Let M = Pn1 and let L = P2. Then M is an orthogonal representation
for every n ≥ 1 and it is also symplectic for n even. If n = 1, then L does not
embed isotropically into M (compare with Example 6.13). For n ≥ 2, L embeds
isotropically into M because we can change the form so that one copy of P1 is
isotropic, i.e. we can write M as T 0 ⊕∇T 0 ⊕M where T 0 ' ∇T 0 ' P1; then the
embedding P2 ↪→ P1 is isotropic as well and it is generic. This example motivates
our choice for the (unexpected) decomposition M = T 0 ⊕ ∇T 0 ⊕M which is not
the natural decomposition into indecomposable ε-representations (for ε = 1).

6.4. Generic ε-subquotients. Let M ∈ R(A, V )Ψ,ε be an ε-representation and
let L ∈ ind(Q). If there exists an isotropic embedding ι : L→M then the quotient
ι(L)⊥/ι(L) is called the ε-subquotient of M by ι(L). In this section we study ε-
subquotients of M induced by a generic isotropic embedding of L into M . It turns
out that there are substantial differences between the split and the non-split types.

Let ι : L → M be a monomorphism with generic quotient π : M // // Q and

assume further that ι(L) is isotropic. Let Y = ι(L)⊥/ι(L) be the ε-subquotient.
We use the notation introduced in Section 5.3 and in the proof of Proposition 6.12

Proposition 6.17. (i) In the split types, Y ' T 1 ⊕∇T 1 ⊕M .
(ii) In the non-split types, there exists a generic embedding ι so that the cor-

responding ε-subquotient Y is the generic quotient of ∇Q by L.

Proof. The proof of Proposition 6.17 needs a little preparation.

We decompose M = S⊕T 0⊕∇T 0⊕M as in the proof of Proposition 6.12, with the
convention that S is zero in the split types. The direct summand M does not play
any role, since it splits off in M , Q and Y for every choice of a generic embedding.
Thus we assume, for simplicity of notation, that it is zero.

By Theorem 2.5, or its Corollary 2.6, we can choose the ε-form at our convenience.
We thus assume that Ψ : M → ∇M is given in the following block form

Ψ : S ⊕ T 0 ⊕∇T 0


ΨS 0 0
0 0 Id

T0

0 εId∇T0 0


// ∇S ⊕∇T 0 ⊕ T 0.

For every index k, such that [L,∇T 0
k ] = 1, we choose arbitrarily a morphism `k :

T 0
k → ∇T 0

k and let ` = diag(`k) : T 0 → ∇T 0 be the induced diagonal morphism.

As in the proof of Proposition 6.12, and by Lemma 6.11, we assume that the generic
embedding ι depends on the choice of ` and it is given by ι = (ιS , ιT 0 , ` ◦ ιT 0)t.
Thus, there is a short exact sequence of the form

0→ L
ι=(ιS , ιT0 , `◦ιT0 )t // S ⊕ T 0∇T 0

 pS pT0 0
0 −` 1


// T 1 ⊕∇T 0 → 0.

A short computation shows that condition ∇ι ◦Ψ ◦ ι = 0 is equivalent to

∇ιS ◦ΨS ◦ ιS +∇ιT 0 ◦ ` ◦ ιT 0 + ε∇ιT 0 ◦ ∇` ◦ ιT 0 = 0.

In the split types this condition is redundant, by Lemma 6.2. On the other hand, in
the non-split types, since ε∇` = `, this becomes ∇ιS ◦ΨS ◦ ιS + 2∇ιT 0 ◦ ` ◦ ιT 0 = 0.

By Lemma 2.8, since ι(L) is isotropic, it is contained in the kernel of the map
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∇ι ◦ Ψ : M → ∇L. Thus, there exists j : T 1 → ∇L and a surjective map that we
denote by f : T 1 ⊕∇T 0 → ∇L which makes the following diagram commutative:

0→ L

ι=


ιS

ιT0

`◦ιT0


// S ⊕ T 0∇T 0

π=

 pS pT0 0

0 −` 1


//

(∇ιS◦ΨS ,∇ιT0◦∇`, ε∇ιT0 ) =∇ι◦Ψ
��

T 1 ⊕∇T 0 → 0

f=(j,ε∇ιT0 )

��
∇L ∇L

We notice that j satisfies the following equalities

j ◦ pS = ∇ιS ◦ΨS ,(6.9)

j ◦ pT 0 − ε∇ιT 0 ◦ ` = ∇ιT 0 ◦ ∇`.(6.10)

In the split types, equation (6.9) is not present since S is zero; moreover, since by
Lemma 6.2 ε∇` = −`, equation (6.10) becomes j ◦ pT 0 = 0; since pT 0 is surjective
(since (pS , pT 0) = pT 0 is surjective) we arrive at the following crucial observation:

(6.11) j = 0 in the split types.

In the non-split types, since by Lemma 6.2 ε` = ∇`, equation (6.10) becomes

(6.12) j ◦ pT 0 = 2∇ιT 0 ◦ ∇` in the non-split types.

We have constructed the following commutative diagrams whose rows and columns
are short exact sequences

(6.13)

L �
� ∇f // ∇Q = ∇T 1 ⊕ T 0 // //

� _

Ψ−1◦∇π
��

Y � _

��
L �
� ι // M = S ⊕ T 0 ⊕∇T 0 π // //

∇ι◦Ψ
����

Q = T 1 ⊕∇T 0

f
����

∇L ∇L.

We remark that all the maps involved depend on the choice of `. We need to show
that in the split types Y ' T 1 ⊕ ∇T 1, for every choice of `, and in the non-split
types, there is a choice of ` such that ∇f is a generic embedding of L into ∇Q.

In the split types, by (6.11), we have ∇f = (0, ει)t and thus Y ' T 1 ⊕ ∇T 1 for
every choice of `, proving the first part of the proposition.

In the non-split types, we choose `k 6= 0 for every possible index k (see the proof of
Proposition 6.12). Then ∇f = (∇j, ειT 0). We claim that we can choose j such that
this map is generic. In view of Proposition 5.18, it is enough to show that ∇f hits
all the �-minimal indecomposable direct summands of ∇T 1 ⊕ T 0 contained in the
support of Hom(L,−). By definition of ιT 0 , every direct summand of T 0 is hit by
the map. Thus, we only need to discuss the direct summands of ∇T 1. Let ∇T 1

i be
a �-minimal direct summand of ∇T 1⊕T 0 contained in the support of Hom(L,−).
We claim that we can choose j such that the component ∇ji : L → ∇T 1

i is non-
zero. Since T 0

i � T 1
i , necessarily T 1

i 6� ∇T 1
i and hence we are in one of the following



34 MAGDALENA BOOS, GIOVANNI CERULLI IRELLI

situations in ΓQ

T 0
i

##

`i // ∇T 0
i

""
L

∇ji //

(ιT0 )i
>>

(ιT0 )i+1   

∇T 1
i

##

;;

T 1
i

ji // ∇L

T 0
i+1

;;

`i+1

// ∇T 0
i+1

<< or

T 0
i

##

`i // ∇T 0
i

��
L
∇ji//

(ιT0 )i

AA

(ιS)j
%%

∇T 1
i

��

;;

T 1
i

ji // ∇L

Sj

EE 99

where the dotted arrows // denote sectional paths, the wavy arrows //

denote a composition of sectional paths and Sj denotes an indecomposable direct
summand of S. In the situation on the right, ∇ji is non-zero by (6.9). In the
left-hand situation, if either `i or `i+1 is non-zero then ∇ji is non zero by (6.12).
If both `i and `i+1 are zero, then any choice of ∇ji makes the equation 6.12 true;
in particular we can choose (∇j)i to be non-zero. This concludes the proof. �

Definition 6.18. The representation Y constructed in Proposition 6.17 is called the
generic ε-subquotient of M by L.

Remark 6.19. We called Y generic since it comes from a generic embedding. In the
proof of Theorem 7.1 we will see that Y has “generic properties” (see remark 7.2).

Example 6.20. Let Q be the quiver of Example 5.6 and let us consider the following
indecomposable Q-representations:

T 0

��

∇T 0

��
L

??

��

Y

??

��

∇L

∇T 1

??

��

T 1

??

��
•

??

S

??

•
For ε = −1 let M = T 0⊕∇T 0⊕S. The generic quotient of M by L is Q = T 1⊕∇T 0.
Then ∇Q = ∇T 1 ⊕ T 0 and the generic quotient of ∇Q by L is Y which, by
Proposition 6.17 is the generic (−1)-subquotient of M by L.

For ε = 1 let M = T 0 ⊕∇T 0 ⊕ S ⊕∇S. Then the generic quotient of M by L is
Q = T 1 ⊕∇T 0 ⊕∇S and by Proposition 6.17 the generic (1)-subquotient of M by
L is T 1 ⊕∇T 1.

Example 6.21. Let Q =
→
A4. Let us consider the Q-representations M = T 0 ⊕∇T 0

and L given by
•
�� ��

T 0 ` //

??

�� ��

∇T 0

�� ��
L

??

�� ��

S

??

�� ��

∇L

�� ��
•

??

∇T 1

??

T 1

??

•
Since [L,∇L] = 0, every embedding of L into M is isotropic. The generic quotient
of M by L is Q = T 1 ⊕∇T 0 and thus ∇Q = T 0 ⊕∇T 1. By Proposition 6.17, the
generic ε-subquotient of M by L is S if ε = −1 and it is T 1 ⊕∇T 1 if ε = 1.
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7. Main result

In this section we state and prove the main result of the paper. For convenience
of the reader, we recall the notation used throughout the paper. Let (Q, σ) be a
symmetric quiver of type An, for some fixed n ≥ 2. Let A = kQ be its complex
path algebra. Let ε be +1 or −1. Let (V,Ψ) be an ε-quadratic space for (Q, σ)
(see Section 2.3) and let d = dimV . For simplicity of notation, we denote by Rd

the variety R(A, V ) of Q-representations with underlying vector space V and by
Rεd the subvariety R(A, V )Ψ,ε of ε-representations with respect to (V,Ψ) (see (2.2)
for the definition). We denote by Gd =

∏
i∈Q0

GL(Vi) the structure group and by

Gε
d := G•(V,Ψ) the subgroup of graded isometries of (V,Ψ). Given M,N ∈ Rεd we

define the ε-degeneration order by M ≤εdeg N if N ∈ GεM .

Theorem 7.1. For every M,N ∈ Rεd the following equivalences hold:

(7.1) M ≤deg N ks +3 M ≤εdeg N
ks +3 M ≤εExt N.

Proof. The implication ≤deg ≤εdeg
ks is obvious since Gε

d is a subgroup of GL•(V ),

and the implication ≤εdeg ≤εExt
ks holds in general by Corollary 3.3. We hence prove

≤deg
+3≤εExt . Let M,N ∈ Rεd such that M ≤deg N . If M and N are isomorphic as

Q-representations then they are isomorphic as ε-representations by Theorem 2.5.
In the rest of the proof we use the symbol ' to denote that two ε-representations
or two Q-representations are isomorphic.

We hence assume that M �deg N . Since Rep(Q) is representation-directed, there
exists an indecomposable direct summand L of N such that [L,N ]1 = 0. Then
[L,M ]1 ≤ [L,N ]1 = 0. By (5.1) we get that [L,N ] = [L,M ]. By Theorem 4.2, L
embeds into M . Let ι : L ↪→ M be a generic embedding and let Q = M/ι(L) be
the (generic) quotient.

Let us discuss, first, the case when L ' ∇L. Then N ' E ⊕ X where E = L
(in the non-split types) or E = L ⊕ ∇L (in the split types) is an indecomposable
ε–representation and X is an ε–representation. We have [E,N ]1 = 0 and also
[N,E]1 = 0 by duality. By Theorem 4.2, E embeds into M and the generic quotient
M/E degenerates to X; it then follows that [M/E,E]1 ≤ [X,E]1 = 0 and thus
M ' E ⊕M/E. Then M/E is an ε–representation and it degenerates to X. By
induction, we get that M/E ≤εExt X and hence M ' E ⊕M/E ≤εExt N .

We assume that L 6' ∇L. Then N ' L⊕∇L⊕X where X is an ε–representation.

In the split types the generic embedding ι is isotropic by Lemma 6.11.

In the non-split types, we claim that we can apply Proposition 6.12. Indeed, by
Theorem 4.2, Q ≤deg X ⊕ ∇L. Then [Q,∇L]1 ≤ [X ⊕ ∇L,∇L]1 ≤ [N,∇L]1 =
[L,N ]1 = 0 and hence [Q,∇L] = [X⊕∇L,∇L]. Again by Theorem 4.2, since there
is a surjection from X ⊕∇L onto ∇L, there is a surjection from Q onto ∇L, too.
Let K be the generic kernel of Q // //∇L ; then, again by Theorem 4.2, K ≤deg X
and hence [L,K]1 ≤ [L,X]1 = 0. We hence see that Proposition 6.12 applies and
we can thus assume that a generic embedding ι : L ↪→M is isotropic.

We denote by Y the generic ε-subquotient of M by L. We claim that

(7.2) Y ≤deg X.

If the claim holds then the proof finishes by induction as follows:

M ≤εExt L⊕ Y ⊕∇L ≤εExt L⊕X ⊕∇L = N

(the first inequality holds by Theorem 3.1, and the second is given by induction
since Y and X are ε-representations of smaller dimension.)
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It remains to prove (7.2).

In the non-split types the claim is true since, by Proposition 6.17, we can choose
ι so that Y is the generic quotient of ∇Q by L; thus, since ∇Q ≤deg L ⊕ X and
[L,∇Q] = [L,L⊕X], by Theorem 4.2 we get Y ≤deg X.

We prove (7.2) in the split types. We write M = T 0 ⊕∇T 0 ⊕M , where T 0 is the
multiplicity-free direct summand of M consisting of �-minimal direct summands
which lie in the support of Hom(L,−). By Proposition 5.18, Q ' T 1 ⊕∇T 0 ⊕M
and ∇Q ' T 0 ⊕∇T 1 ⊕M . By Proposition 6.17, Y = T 1 ⊕∇T 1 ⊕M . Thus there
is a commutative diagram with exact rows and columns

(7.3) 0

��
0

��
0 // L // ∇Q = T 0 ⊕∇T 1 ⊕M //

��

Y = T 1 ⊕∇T 1 ⊕M //

��

0

0 // L // M = T 0 ⊕∇T 0 ⊕M //

��

Q = T 1 ⊕∇T 0 ⊕M
��

// 0

∇L
��

∇L
��

0 0

In view of Theorem 4.3 it is enough to prove that

(7.4) [Y,E] ≤ [X,E] ∀E ∈ ind(Q).

If [L,E] = 0, then [Y,E] = [∇Q,E] ≤ [X ⊕ L,E] = [X,E].

If [∇L,E]1 = 0 then [Y,E] ≤ [Q,E]− [∇L,E] ≤ [X,E].

Thus we can assume that [L,E] = 1 = [∇L,E]1 (implying that [∇L,E] = 0). In
this case, there is a commutative diagram with exact rows and columns

(7.5) 0

��

0

��
0 // Hom(Q,E) //

��

Hom(M,E)
h3 //

h1

��

Hom(L,E) = k

0 // Hom(Y,E) //

k2
��

Hom(∇Q,E)
h2 //

k1
��

Hom(L,E) = k

Ext1(∇L,E) Ext1(∇L,E) = k

We get [Y,E] ≤ [Q,E] + 1 ≤ [X,E] + 1. Thus we can assume that [Q,E] =
[X,E]. Similarly, we get [Y,E] ≤ [∇Q,E] ≤ [X,E] + 1. Thus we can assume
that [∇Q,E] = [X,E] + 1. If [∇Q,E] = [M,E] then h1 is surjective; this implies
that k1 = 0 and hence k2 = 0. Thus, [Y,E] = [Q,E] = [X,E] in this case. If
[Q,E] < [M,E] then h3 is surjective; this implies that h2 is surjective and hence
[Y,E] = [∇Q,E]− 1 = [X,E]. It remains to treat the case when E is such that

(7.6) [Q,E] = [M,E] = [X,E], [∇Q,E] = [M,E] + 1 = [X,E] + 1.
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We claim that under the assumptions (7.6) there exists an index i such that E is
contained in the ∇-invariant square

(7.7)

G1

  
∇T 1

i

==

!!

T 1
i

G2

>>

and moreover G1 6� E and G2 6� E (i.e. E does not lie in the sectional paths
ending in T 1

i ). To prove this claim it is enough to prove that [∇T 1, E] 6= 0 and
[T 1, E] = [T 0, E] = 0. We have [∇T 1, E] 6= 0, since [∇Q,E] > [M,E]. To prove
that [T 1, E] = [T 0, E] = 0 we consider the short exact sequence

0→ L→ T 0 → T 1 → 0.

If [T 1, E] 6= 0 then [T 1, E]1 = 0 (this is because T 1
i 6� T 1

j for i 6= j, or because

T 1 is part of a separating tilting object, see Remark 5.19) and hence [T 0, E] =
[T 1, E] + [L,E] > [T 1, E] which contradicts the hypothesis [Q,E] = [M,E]. Thus,
[T 1, E] = [T 0, E] = 0 and hence both E and τ∇E are contained in the square
(7.7). If E = τ∇E, i.e. if E is δ-invariant, then δY,X(E) = [X,E] − [Y,E] is even
by Proposition 6.10. Then [Y,E] 6= [X,E] + 1 and hence [Y,E] ≤ [X,E]. Suppose
that τ∇E 6= E. Without loss of generality we can assume that τ∇E ≺ E, since
δY,X(E) = δY,X(τ∇E) by Lemma 6.5. The rectangle from τ∇E to E is a square

F1

  
τ∇E

<<

""

E

F2

>>

and its middle vertices F1 and F2 are δ-invariants. This square is all contained in
the rectangle (7.7) and gives rise to a short exact sequence

0→ τ∇E → F = F1 ⊕ F2 → E → 0.

The only indecomposable direct summand of Y which could belong to this square
is ∇T 1

i = τ∇E, since, if there are others then there would be a �-minimal direct
summands of M belonging to the support of Hom(L,−), against the definition of
T 0. This implies that the induced map Hom(Y, F )→ Hom(Y,E) is surjective and
hence we have

[Y, F ] = [Y, τ∇E] + [Y,E].

Thus
[Y, τ∇E] + [Y,E] = [Y, F ] ≤ [X,F ] ≤ [X, τ∇E] + [X,E]

which implies by Lemma 6.5
2δY,X(E) ≥ 0

proving the claim. �

Remark 7.2. In the proof of Theorem 7.1 we see that if M is an ε-representation
which degenerates to an ε-representation of the form L⊕∇L⊕X and [L,N ] = [L,M ]
then the generic ε-subquotient of M by L degenerates to X. This suggests the
existence of a “cancellation theorem” for isotropic subrepresentations.
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8. Examples

In this section we illustrate the proof of Theorem 7.1 in some examples. Given two
ε-representationsM , N of a symmetric quiver of type A such thatM ≤deg N we find
a sequence M = M(0),M(1), · · · ,M(h) = N of ε-representations such that there is
a one parameter subgroup λi(t) ∈ Gε

d such that limt→0 λi(t) ·M(i) = M(i+ 1). We

write M(i) +3 M(i+ 1) . To construct M(i+ 1) from M(i) we follow the strategy

of the proof of Theorem 7.1: we choose an indecomposable direct summand L of
N such that [L,N ] = [L,M(i)] and we find the generic ε-subquotient of M(i) by
L described in Proposition 6.17. Then Theorem 3.1 provides the aforementioned
one-parameter subgroup. If L is a direct summand of both N and M(i) then we can
remove it from both. The representations M(i)’s are described by the multiplicities
of their direct summands. At step i we highlight as • the indecomposable direct
summand L of N used to construct M(i+1) from M(i). Different choices of L give
rise to different degeneration paths from M to N .

Example 8.1. Let Q be
1
��

3
����

2 4
and ε = 1 (split type). (ΓQ is shown in

Example 5.6.)

M • • 1 1 N 1 1

• 4 • 1 2 1 1 • 1

• • • • 1 1

• • • 1 • 1 2 • 2

+3 +3

Example 8.2. Let Q be
1
��

3
����

2 4
and ε = −1 (non-split type).

M • • • • • • N 1 1

• 4 • 1 3 1 1 1 1 1 • 1

• • • • 1 1 1 1

• • • 1 • 1 2 • 2 2 • 2

+3 +3 +3

Example 8.3. Let Q be of type
→
A5 and ε = −1 (split type):

M 6 4

• • 1 1

• • • • • •
• • • • • • • •

• • • • • 1 • • • 1

N 2 4

1 1 • •
1 • 1 • • •

1 • • 1 1 1 1 1

1 • • • 1 1 • • • 1

+3

��

ks
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Example 8.4. Let Q be of type
→
A5 and ε = 1 (non-split type):

M 6 5 4

• • • • • •
• • • • 1 • • 1 •

• • • • • • • • 1 • • 1

• • • • • 1 • • • 1 1 • 1 • 1

N 2 3

1 1 • •
1 • 1 1 1 1

1 • • 1 1 • • 1

1 • • • 1 1 • • • 1

+3 +3

��

ks

Example 8.5. Let Q be

2
�� ��

1 3
��

5
��

4

and ε = 1 (non-split type). (ΓQ is shown

in Example 5.7.)

M • • • 1 • 1 1 • 1

• • • • • •
• 4 • • 4 • • 3 •

• • • • 1 • • 1 1 • • 1

1 • 1 • • • 1 1 1

N 3 2 3 2 1 2 1 • 1

• • • • • •
• • • • 1 • • 2 •

1 1 1 1 1 1 1 1 1 1 1 1

1 • 1 1 • 1 1 • 1

+3 +3

��

ksks

Example 8.6. Let Q be

2
�� ��

1 3
��

5
��

4

and ε = −1 (split type).

M • • • 1 • 1 2 • 2

• • • • • •
• 4 • • 4 • 1 2 1

• 1 1 • 1 • • 1 1 1 1 1

• • • • 2 • • • •

N 2 • 2 2 • 2

• • • •
1 • 1 1 2 1

1 1 1 1 1 • • 1

2 2 2 1 2 1

+3 +3

��

ks
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5. I. Assem, A. Skowroński, Minimal representation-finite coil algebras, Manuscripta Math., 67
(1990), 305-331.

6. I. Assem, D. Simson, A. Skowronski, Elements of the representation theory of associative

algebras. Vol. 1. Techniques of representation theory. London Mathematical Society Student
Texts, 65. Cambridge University Press, Cambridge, 2006.

7. K. Bongartz, On Degenerations and Extensions of Finite Dimensional Modules, Adv. Math.
121 (1996), 245–287.

8. S. Brenner, A combinatorial characterization of finite Auslander-Reiten quivers, Lecture

Notes in Math., 1177 (1986).
9. M. Boos, G. Cerulli Irelli. Symmetric degenerations are not in general induced by type A

degenerations. In preparation. 2021.

10. M. Boos, G. Cerulli Irelli, F. Esposito. Parabolic orbits of 2-nilpotent elements for classical
groups, J. Lie Th. 29(4), 2019.

11. M. Butler, M. Ringel, Auslander-reiten sequences with few middle terms and applications to

string algebras, Comm. Alg., 15, no.1, 145–179.
12. W. Crawley-Boevey, Lectures on representations of quivers. Available on the author’s web-

page.

13. G. Cerulli Irelli, X. Fang, E. Feigin, G. Fourier, M. Reineke, Linear degeneration of flag
varieties. Math. Z. 287 (2017), 615-654.

14. G. Cerulli Irelli, X. Fang, E. Feigin, G. Fourier, M. Reineke, Linear degeneration of flag
varieties: partial flags, defining equations and group actions. Math. Z. 296 (2020), 453-477.

15. H. Derksen and J. Weyman, Generalized quivers associated to reductive groups. Colloq. Math.

94 (2002), no. 2, 151-173.
16. D. Happel and C. M. Ringel, Tilted algebras. Trans. AMS 274 (1982), no. 2, 399-443.

17. V. G. Kac, Some remarks on nilpotent orbits. J. Algebra 64 (1980), 190-213.

18. V. G. Kac, Infinite root systems, representations of graphs and invariant theory. Inv. Math.
56 (1980), 57-92.

19. H. Kraft, C. Procesi On the geometry of conjugacy classes in classical groupes. Comm. Math.

Helvetici 57 (1982), 539 602.
20. P. Magyar, J. Weyman and A. Zelevinsky, Symplectic multiple flag varieties of finite type. J.

Algebra 230, 245–265 (2000).

21. R. W. Richardson, On orbits of algebraic groups and Lie groups. Bull. Austral. Math. Soc.
25 (1982), 1-28.

22. C. Riedtmann, Degenerations for representations of quivers with relations. Ann. Sc. ENS, 19

(1986), 275-301.
23. C. M. Ringel, Tame algebras and integral quadratic forms. Lecture Notes in Mathematics.

1099 (1980). Springer.
24. R. Schiffler, Quiver Representations. CMS Books in Mathematics (2014). Springer.

25. D. A. Shmelkin, Signed quivers, symmetric quivers and root systems. J. Lond.Math. Soc. (2)

73 (2006), no. 3.
26. E. B. Vinberg, The Weyl group of a graded Lie algebras. Math. USSR-Izv 10 (1976), 463-495.

27. G. Zwara, Degenerations for modules over representation-finite algebras. Proc. AMS 127
(1999), n.5, 1313-1322.

28. G. Zwara, Degenerations for modules over representation-finite biserial algebras. J. Algebra

198 (1997), 563-581.

Magdalena Boos:
Ruhr University Bochum, Faculty of Mathematics, 44780 Bochum, (Germany).

E-mail address: magdalena.boos-math@rub.de

Giovanni Cerulli Irelli:
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