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Abstract. We consider a symmetric quiver with relations. Its (symmetric)
representations of a fixed symmetric dimension vector are encoded in the (sym-

metric) representation varieties. The orbits by a (symmetric) base change

group action are the isomorphism classes of (symmetric) representations. The
symmetric orbits are induced by simply restricting the non-symmetric orbits.

However, when it comes to orbit closure relations, it is so far an open question
under which assumptions they are induced. We describe an explicit example

of a quiver of finite representation type for which orbit closure relations are

induced in types B and C, but not in type D.
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1. Introduction

Let A = kQ/I be a symmetric quiver algebra. We fix a Q0-graded k-vector space
V and denote the representation variety of representations with underlying vector
space V by R(A, V ). Inside of R(A, V ) there is a subvariety R(A, V )〈−,−〉,ε of
so-called ε-representations; here ε is a sign and 〈−,−〉 is a non-degenerate bilin-
ear form on V . An ε-representation is a symmetric representation which has an
orthogonal or a symplectic structure. There are natural (symmetric) base change
actions on these varieties; their orbits correspond to isomorphism classes of (sym-
metric) representations. It is natural to ask, whether the orbits and their closures
can be translated easily between the two group actions. Concerning the orbits,
Derksen and Weyman proved in 2002 that by restricting an orbit O ⊆ R(A, V ) to
R(A, V )〈−,−〉,ε, we get an orbit of ε-representations; and more substantial that in
this way every symmetric orbit is obtained. The question under which assumptions
the orbit closure relations are induced by restricting in the same way, is still open.
In this article, we present a counterexample of a quiver of finite representation type,
that is, an example of such algebra for which orbit closure relations are not induced
by type A.

This work is heavily based on our preceding article [5] where many details on the
symmetric representation theory of a symmetric quiver algebra can be found. In
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particular, in said article we prove that for Q a Dynkin quiver with symmetry, orbit
closure relations are induced by type A.

We structure this article as follows: The setup of our Main Question 2.3 is explained
in Section 2 where aforesaid question is posed. At the same time we recall some
general knowledge on algebras with self-dualities. In Section 3, we define several
partial orders which embed our Main Question into a representation-theoretical and
homological frame. Our counterexample is described in Section 4 where we look at
the so-called seesaw algebra and define particular symmetric representations which
degenerate in type A, but not in type D. We end the paper by posing conjectures
which are likely to hold true from our current perspective on the topic.

Acknowledgements The authors would like to thank Francesco Esposito and
Martin Bender for discussions about the contents of this article. This work was
sponsored by DFG Forschungsstipendium BO 5359/1-1, DFG Rückkehrstipendium
BO 5359/3-1 and DFG Sachbeihilfe BO 5359/2-1.

2. Setup

Let k = C be the field of complex numbers and let Q = (Q0,Q1, s, t) be a finite
quiver, that is, an oriented graph with a finite set of vertices Q0, a finite set of edges
Q1 and two maps s, t : Q1 → Q0 which provide the orientation α : s(α) → t(α)
of the edges. Let us consider the elements of Q1 as arrows. A sequence of arrows
ω = αs · · ·α1 is called a path in Q whenever t(αi) = s(αi+1) for all i; we formally
include a path εi : i→ i of length zero for each i ∈ Q0. The path algebra kQ of Q
is the k-algebra spanned as a k-vector space by the set of all paths in Q together
with the concatenation of paths as multiplication. Let R ⊆ kQ be the 2-sided
ideal generated by all arrows in Q1; it is called the arrow ideal. Then every ideal
I ⊆ kQ which determines an integer s with Rs ⊆ I ⊆ R2 is called admissible. If
I is admissible, then the quotient algebra A := kQ/I is a finite-dimensional and
associative quiver algebra [3].

Now assume that Q comes with a symmetry as defined in [9], that is, we consider
a tuple (Q, σ) where σ : Q → Qop is an involutive bijection of Q0 and an arrow-
reversing involution of Q1. Then (Q, σ) is called symmetric quiver. Assume that
an admissible ideal I ⊂ kQ fulfills σ(I) = I, then A = kQ/I is isomorphic (via σ)
to its opposite Aop = kQop/σ(I) and the pair (A, σ) is called a symmetric quiver
algebra.

2.1. Quiver representations. Our main question in this article arises in the con-
text of (symmetric) representations. Let V = ⊕i∈Q0

Vi be a finite dimensional
Q0-graded vector space of graded dimension d = dimV = (dimVi)i∈Q0 . We
denote by Rep(A) the representation category and by R(A, V ) the variety of A-
representations having V as underlying vector space, that is, its elements are col-
lections f = (fα : Vs(α) → Vt(α))α∈Q1

of linear maps such that fπ = 0 for every
π ∈ I:

R := R(A, V ) ⊆ R(kQ, V ) :=
⊕

α:i→j∈Q1

Homk(Vi, Vj).

The vector d is called the dimension vector of these representations. Let GL•(V ) :=∏
i∈Q0

GL(Vi) be the group of graded automorphisms of V , then GL•(V ) acts on

R(A, V ) by change of basis: given g = (gi)i∈Q0
∈ GL•(V ) and M = (Mα)α∈Q1

∈
R(A, V ) the representation g ·M is defined by (g ·M)α = gt(α) ◦Mα ◦ g−1

s(α). The

GL•(V )-orbits are the isomorphism classes of A-representations with underlying
vector space V in the representation category of A.

Let M ∈ R(A, V ), let Bi be a k-basis of Vi for every i ∈ Q0 and let B be the
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disjoint union of these sets Bi. We define the coefficient quiver Γ(M) := Γ(M,B)
of M with respect to the basis B to be the quiver with exactly one vertex for each
element of B, such that for each arrow α ∈ Q1 and every element b ∈ Bs(α) we
have

Mα(b) =
∑

c∈Bt(α)

λαb,cc

with λαb,c ∈ k. For each λαb,c 6= 0 we draw an arrow b→ c with label α [18]. Thus, the
quiver reflects the coefficients corresponding to the representation M with respect
to the chosen basis B and will help us to depict representations in a nice way in the
remainder of the article. In case there are no multiple arrows between two vertices,
we label the arrows of the coefficient quiver with the actual value of λαb,c.

We include a basic example in order to display the ideas behind our setup. We will
come back to this example throughout this section.

Example 2.1. Let Q be the one-loop quiver, that is, Q0 = {x} and Q1 = {α : x→
x}, let V = kn, and consider the admissible ideal I = (αn) ⊆ kQ. Then R(A, V ) =
N = {N ∈ kn×n | Nn = 0} equals the nilpotent cone and GL•(V ) = GLn(k).
Thus, the GL•(V )-action on R(A, V ) is the usual conjugation action, its orbits are
described by the Jordan canonical form [14]; or by partitions, that is, combinatorial
objects named Young diagrams. The closure relations are known by Gerstenhaber
[11] and are given by box dropping of Young diagrams.

2.2. Symmetric quiver representations. We come back to the symmetric quiver
algebra A = kQ/I now. This algebra comes along with a self-duality on its repre-
sentations which we will define briefly; more details can be found in [5].

The anti-involution σ can be extended to an isomorphism σ : A → Aop of A
to its opposite algebra. This isomorphism induces an equivalence σ : Rep(A) →
Rep(Aop) of the representation categories; and a self-duality ∗ : Rep(A)→ Rep(A)
on Rep(A) by composing with the standard k-duality D = Hom(−, k) . Let
V ∗ = Hom(V, k) be the linear dual of a k-vector space V and f∗ : V ∗ → U∗

be the linear dual of a linear map f : U → V defined by f∗(h)(u) = h(f(u)) for
every h ∈ V ∗ and u ∈ U .

For a Q0-graded vector space V = ⊕i∈Q0Vi, we define its twisted dual ∇V as the
Q0-graded vector space whose i-th component is (∇V )i = V ∗σ(i).

Definition 2.2. Let ∇ : Rep(A)→ Rep(A) be the functor defined by

• ∇(M)α = −M∗σ(α) for every arrow α on the objects M

• (∇h)i = h∗σ(i), for every vertex i ∈ Q0 on the morphisms h : M → N

Notice that ∇V = V ∗ for the semi-simple representation V = ⊕i∈Q0
Vi.

Let us fix ε ∈ {±1} and let 〈−,−〉 : V × V → k be a non-degenerate bilinear form
which fulfills two conditions:

(1) the form 〈−,−〉 is compatible with σ, i.e. 〈−,−〉|Vi×Vj = 0 if j 6= σ(i);
(2) the form 〈−,−〉 is an ε-form: i.e. 〈v, w〉 = ε〈w, v〉 for every v, w ∈ V .

Then the dimension vector of V is σ-symmetric, i.e. dσ(i) = di for every i ∈
Q0. Every endomorphism f of V has a unique adjoint f? with respect to 〈−,−〉
defined by the condition 〈f(v), w〉 = 〈v, f?(w)〉, for all v, w,∈ V . We denote by
G(V, 〈−,−〉) = {g ∈ GL(V )|g = (g?)−1} the group of isometries of (V, 〈−,−〉), by
On the orthogonal group and by SPn the symplectic group of n× n-matrices.

M ∈ R(A, V ) is an ε-representation of (A, σ) with respect to (V, 〈−,−〉) if [9]

(iii) M? +M = 0.



4 MAGDALENA BOOS, GIOVANNI CERULLI IRELLI

Condition (iii) means that M , interpreted as an endomorphism of V , lies in the
Lie algebra of G(V, 〈−,−〉). A +1-representation is called orthogonal and a −1-
representation is called symplectic. We collect all ε-representations in a variety
R(A, V )〈−,−〉,ε = {M ∈ R(A, V )|M? + M = 0} and denote by G•(V, 〈−,−〉) :=
G(V, 〈−,−〉) ∩GL•(V ) the group of graded isometries of (V, 〈−,−〉).
Then the action of GL•(V ) onR induces an action of G•(V, 〈−,−〉) onR(A, V )〈−,−〉,ε

by change of basis ([9, 5]). One first question which suggests itself is whether or
not

G•(V, 〈−,−〉) ·M = GL•(V ) ·M ∩R(A, V )〈−,−〉,ε

holds true for every M ∈ R(A, V )〈−,−〉,ε, that is, whether the orbits of the smaller
group are induced by the orbits of the bigger group. This question is answered
positively by Derksen and Weyman in [9] and with different techniques in [5]. The
main question which we address in this article follows immediately:

Main Question 2.3. Is it true that

G•(V, 〈−,−〉) ·M = GL•(V ) ·M ∩R(A, V )〈−,−〉,ε

for every M ∈ R(A, V )〈−,−〉,ε?

Main Question 2.3 is answered positively in [5] for Dynkin quivers. Its answer is
particularly interesting when the algebra A is of finite representation type, that is,
in case there is only a finite number of GL•(V )-orbits in R(A, V ), as in Example
2.4. Our aim in this article is to give a counterexample of a representation-finite
algebra for which the answer to Main Question 2.3 is negative. This is indeed
unexpected, since our example is closely related to the fundamental Example 2.1
which does not give a counterexample.

Example 2.4. In case of Example 2.1, we fix ε to be +1 or −1. Let Jk be the
k × k-anti-diagonal matrix with every entry on the anti-diagonal being one and
every other entry being zero. The non-degenerate bilinear form 〈−,−〉 : V ×V → k
given by the matrix

Fε =

[
0 Jl
εJl 0

]

if ε = −1 and by Jn if ε = 1 fulfills conditions (1) and (2). Then G•(V, 〈−,−〉) = On

if ε = 1 and G•(V, 〈−,−〉) = SPn if ε = −1 and the G•(V, 〈−,−〉)-action on
R(A, V )〈−,−〉,ε = N ∩ LieG is given by orthogonal/symplectic conjugation. The
orbits of the latter are classified by Springer and Steinberg by so-called ε-partitions
and their closures are known by Hesselink (these results are e.g. described by Kraft
and Procesi in [15]). Main Question 2.3 is answered positively. Indeed, assume that
there is an orbit closure relation between two orbits, in R(A, V ), i.e. partitions. If
both partitions are ε-partitions, then there also is an orbit closure relation between
them in R(A, V )〈−,−〉,ε.

2.3. Motivation. Example 2.1 shows that - in addition to being interesting from
a quiver representation-theoretic point of view - the answer of Main Question 2.3
has further applications to algebraic Lie Theory. This will be worked out in more
detail in Remark 4.3 in Section 4.

Remark 2.5. Our setup fits into a more general context described by Magyar, Wey-
man and Zelevinsky in [16]. In fact, given a complex algebraic variety X together
with an action of a group G and two involutions ρ : G → G and ∆ : X → X such
that ∆(g ·∆x) = gρ · x, we denote the fixed point sets by Gρ ⊂ G and X∆ ⊂ X.
Assume that
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(1) the group G is a subgroup of the group of invertible elements E× of a
finite-dimensional associative algebra E over k;

(2) the anti-involution of G given by g 7→ g∗ := (gρ)−1 extends to a k–linear
anti-involution f 7→ f∗ on the algebra E;

(3) for every fixed point x ∈ X∆, its stabilizer H = StabG(x) is the group of
invertible elements of its linear span Spank(H) ⊂ E.

Then Gx∩X∆ = Gρ x holds true for all x ∈ X∆ by [16, Section 2.1]. The natural
subsequent (and open) question is

(2.1) ”Is it true that Gx ∩X∆ = Gρ x for every x ∈ X∆?”

As described in [5, Subsection 2.4], R(A, V ) and R(A, V )〈−,−〉,ε can be realized as
X and X∆; and GL•(V ) and G•(V, 〈−,−〉) can be realized as G and Gρ. Thus,
our counterexample on Main Question 2.3 can be thought of as a counterexample
for (2.1).

3. Ext-, deg- and hom-order

Let A be a quiver algebra, let d ∈ ZQ0

≥0 be a dimension vector and let V be a
Q0-graded complex vector space of dimension vector d.

Let M,N ∈ R(A, V ). We denote [M,N ] := dim HomA(M,N) and [M,N ]1 :=
dim Ext1

A(M,N) and define three partial orders on R(A, V ) which were first de-
scribed by Abeasis-Del Fra for quivers of Dynkin type A [1, 2], before being gener-
alized to quiver algebras by Riedtmann [17], Bongartz [4] and Zwara [19].

• The degeneration order ≤deg is defined by

M ≤deg N :⇐⇒ N ∈ GL•(V )M

• The Hom-order ≤Hom is defined by

M ≤Hom N :⇐⇒ [M,E] ≤ [N,E] for every indecomposable E.

• The Ext-order ≤Ext is defined by

∃M1, · · · ,Mk ∈ R(A, V ) and short exact
M ≤Ext N :⇐⇒ sequences 0→ Ui →Mi−1 → Vi → 0 (∀i)

such that M1 = M,Mk = N, Mi ' Ui ⊕ Vi.
It is known by [4, Lemma 1.1] (first implication) and [17, Proposition 2.1] (second
implication) that

M ≤Ext N +3 M ≤deg N +3 M ≤Hom N.

IfA is an algebra of finite representation type, then Zwara [19, Corollary of Theorem
1] shows

M ≤deg N ks +3 M ≤Hom N.

If furthermore all indecomposables are rigid, i.e. [E,E]1 = 0 for all indecomposables
E, then all three orders coincide [19, Theorem 2]. In particular, they are equivalent
for Dynkin quivers. Note that the result on Dynkin quivers also follows from work
of Bongartz where he shows that all three partial orders coincide for representation-
directed algebras [4, Proposition 3.2,Corollary 4.2].

Following [5], we introduce symmetric versions of ≤deg and ≤Ext now. Thus, we
assume A to be a symmetric quiver algebra, let ε be +1 or −1 and let 〈−,−〉 be a
bilinear form as in the Section 2. Then we consider the following partial orders on
R(A, V )〈−,−〉,ε.

• The symmetric degeneration order ≤εdeg is defined by

M ≤εdeg N :⇐⇒ N ∈ GL•(V, 〈−,−〉)M.
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• The symmetric Ext-order ≤εExt is defined by

∃M1, · · · ,Mk ∈ R(A, V )〈−,−〉,ε and sh. ex. seqs
M ≤Ext N :⇐⇒ 0→ Ui →Mi−1 → Vi → 0 (∀i) s.th. M1 = M,Mk = N,

Ui is isotropic in Mi−1, and Mi ' Ui ⊕∇Ui ⊕ U⊥i /Ui.

It is known by [5, Corollary 3.3] and since GL•(V, 〈−,−〉) ⊆ GL•(V ) is a subgroup
that

M ≤εExt N
+3 M ≤εdeg N

+3 M ≤deg N ( +3 M ≤Hom N).

Main Question 3.1. Does

≤εdeg
ks +3 ≤deg

hold true on R(A, V )〈−,−〉,ε?

From our considerations before, it is clear that Main Question 2.3 and Main Ques-
tion 3.1 coincide; we can thus answer either of them.

4. The Seesaw algebra

Let n ∈ {2l, 2l+1} be an integer and let A = kQ/I be the symmetric quiver algebra
given by the symmetric quiver

Q : 1
a1 // 2

a2 // · · ·
al−1 // l

al // ω

α=α∗

ZZ
a∗l // l∗

a∗l−1 // · · ·
a∗2 // 2∗

a∗1 // 1∗

where σ(i) = i∗ for i ∈ Q0 ∪ Q1 and by the admissible ideal I = (α2, a∗l al). We
call it the Seesaw algebra due to the appearance of Q. We consider the symmetric
dimension vector

d := (di)i = (1, 2, · · · , l − 1, l, n, l, l − 1, · · · , 2, 1)

Let us fix n = 2l for now, let V = ⊕i∈Q0
Vi = ⊕i∈Q0

kdi and fix ε = 1 (that is,
we work in orthogonal type D). Let 〈−,−〉 be a bilinear ε-form on V as in Section
2. In order to be able to work in coordinates (and to depict our representations

nicely), let us fix a basis Bs = {v(s)
k | 1 ≤ k ≤ i} of each Vs where s ∈ {i, i∗} and

Bω := {v(ω)
k , v

(ω∗)
k | 1 ≤ k ≤ l} of Vω, such that on the basis elements the form is

zero unless

〈v(i)
k , v

(i∗)
k 〉 = 1, 〈v(i∗)

k , v
(i)
k 〉 = ε, 〈v(ω)

k , v
(ω∗)
k 〉 = 1 or 〈v(ω∗)

k , v
(ω)
k 〉 = ε.

Let M = (Mβ)β∈Q1
and N = (Nβ)β∈Q1

be two representations. Here, Mαi = Nαi ,
are the standard embeddings into the first i copies of k, Mαi∗ = Nαi∗ equals minus
the standard projection of the last i copies of k onto ki. Furthermore, Mα sends

v
(ω)
1 to v

(ω∗)
l , v

(ω)
l to v

(ω∗)
1 and Nα sends v

(ω)
1 to v

(ω)
l , v

(ω∗)
l to v

(ω∗)
1 and every other

basis element is mapped to zero by Mα and Nα. We depict them by their coefficient
quivers for n = 4.

v
(1)
1

1 // v(2)1

1 // v(ω)
1

1

zz
M = v

(2)
2

1 // v(ω)
l

−1

''
v
(ω∗)
l −1

// v(2
∗)

2

v
(ω∗)
1 −1

// v(2
∗)

1 −1
// v(1

∗)
1
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v
(1)
1

1 // v(2)1

1 // v(ω)
1

1tt
N = v

(2)
2

1 // v(ω)
2

v
(ω∗)
2 −1

//
−1 ))

v
(2∗)
2

v
(ω∗)
1 −1

// v(2
∗)

1 −1
// v(1

∗)
1

Then the relations M2
α = N2

α = 0 = πl ◦ ιl are fulfilled and M,N ∈ R(A, V )〈−,−〉,ε.
The following proposition gives our counterexample.

Proposition 4.1. In type D,,

(1) N ∈ GL•(V ) ·M ⊆ R(A, V ), i.e. M ≤deg N

(2) N /∈ G•(V, 〈−,−〉) ·M ⊆ R(A, V )〈−,−〉,ε, i.e. M �εdeg N

Proof. In a similar way as in [7], the representation M corresponds to the so-called
oriented link pattern (representing the part of the coefficient quiver which describes
the loop α at vertex ω)

•
1
•
2 · · · •l •

l∗ · · · •2∗ •
1∗

!! !!

and the representation N corresponds to

•
1
•
2 · · · •l •

l∗ · · · •2∗ •
1∗

## ##

In order to prove (1), we make use of the description of degenerations given in [7]:

M ≤deg N ⇐⇒ (pMi ≤ pM
′

i ) ∧ (qMi,j ≤ qM
′

i,j ) ∀i, j ∈ {1, . . . , l, 1∗, . . . , l∗},

where pXi and qXi,j are data which depend on the oriented link pattern of a repre-
sentation X as follows:

• pXi equals the number of vertices to the left of i which are not incident with
an arrow, plus the number of arrows whose target vertex is to the left of i.
• qXi,j equals pXj plus the number of arrows whose source vertex lies to the

left of j and whose target vertex lies to the left of i.

By simple counting, we see that pMi ≤ pNi and qMi,j ≤ qNi,j for all i, j, and, thus, that
M ≤deg N .

In order to prove (2), we calculate the dimensions of G•(V, 〈−,−〉) ·M = G•(V, 〈−,−〉)·
M and G•(V, 〈−,−〉) ·N . Note that

dim G•(V, 〈−,−〉) = dim(

l∏

i=1

GLi(k)×On) =

l∑

i=1

i2 + 2l2 − l.

The stabilizer dimension can e.g. be calculated by basic methods of linear algebra
when going over to Borel-orbits of 2-nilpotent matrices as explained in Remark 4.3.
Another option is a calculation in terms symmetric endomorphism spaces [6] or of
certain Crawley Boevey triples [8] (since A is a string algebra). It follows that

dim StabG•(V,〈−,−〉)M = dim StabG•(V,〈−,−〉)N = l2 − 3l + 4

In particular, the dimensions of the orbits of M and N coincide:

G•(V, 〈−,−〉) ·M =
∑l
i=1 i

2 + 2l2 − l − (l2 − 3l + 4)
= 1

3 l
3 + 3

2 l
2 + 13

6 l − 4
= G•(V, 〈−,−〉) ·N
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Since the orbit closure G•(V, 〈−,−〉) ·M equals the union of G•(V, 〈−,−〉) ·M and

orbits of smaller dimension, we have therefore shown N /∈ G•(V, 〈−,−〉) ·M and,
thus, M �εdeg N �

Proposition 4.1 leads to negative answers for Main Question 2.3 and Main Question
3.1 for the seesaw algebra and thus we have the following corollary.

Corollary 4.2. Given a symmetric quiver algebra of finite representation type, the
equivalences

≤deg⇐⇒≤εdeg

≤εdeg⇐⇒≤Hom

are not in general true. This particularly means that orbit closure relations between
symmetric representations are not in general induced by type A degenerations.

Remark 4.3. The (symmetric) representation theory of the seesaw algebra can be
translated to a particular Lie-theoretic setup [6] in a related, but more involved
way as in Example 2.4: Let B ⊂ GLn(k) be the standard Borel subgroup of upper-
triangular matrices. Let G be a classical Lie group, then BG = B ∩ G ⊂ G is
the standard Borel subgroup of G. If G is orthogonal, we fix ε = 1 and if G is
symplectic, we fix ε = −1. We consider the dimension vector d, the k-vector space
V and the form 〈−,−〉 on V as described in the beginning of this section. Let
N (2) ⊆ N be the subvariety of 2-nilpotent matrices and notice that B acts on N (2)

and BG acts on N (2)∩LieG via conjugation. Let furthermore R0(A, V ) ⊆ R(A, V )
and R0(A, V )〈−,−〉,ε ⊆ R(A, V )〈−,−〉,ε denote the subvarieties of representations
of which the linear maps at αi are injective and at αi∗ are surjective for all i, i∗.
Following [6], there are associated fibre bundle constructions and isomorphisms of
complex varieties

R0(A, V ) ∼= GL•(V )×B N (2)

R0(A, V )〈−,−〉,ε ∼= G•(V, 〈−,−〉)×BG N (2) ∩ LieG

This means that orbits and orbit closure relations between the Borel-actions on 2-
nilpotent matrices and the isomorphism classes of representations can be translated.
In particular, our counterexample of Proposition 4.1 shows that orthogonal Borel-
orbit closure relations in N (2) are not induced by Type A. Note that further Lie-
theoretic actions can be translated to quiver-theoretic settings via associated fibre
bundles, for example certain parabolic group actions on different subvarieties of the
nilpotent cone.

Let us consider an explicit example now.

Example 4.4. Let (n, ε) = (5, 1) in Type B, (n, ε) = (4,−1) in Type C and (n, ε) =
(4, 1) in Type D. Let us fix a basis as in the proof of Proposition 4.1 and add a
basis vector v for odd type B; this vector fulfills 〈v, v〉 = 1 and 〈v, v′〉 = 0 for every
other basis vector v′. Up to isomorphism, every representation M can be assumed
to have the following coefficient quiver, together with a matrix Mα at the loop:

v
(1)
1

1 // v(2)
1

1 // v(ω)
1

v
(2)
2

1 // v(ω)
2

(v)

v
(ω∗)
2 −1

// v(2∗)
2

v
(ω∗)
1 −1

// v(2∗)
1 −1

// v(1∗)
1
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O(5) SP(4) O(4)




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 -1 0 0 0







0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 -1 0







0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 -1
0 0 0 0 0







0 0 0 1 0
0 0 0 0 -1
0 0 0 0 0
0 0 0 0 0
0 0 0 0







0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




Orbit dimension

4

3

2

1

0




0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0







0 0 0 0
0 0 0 0
1 0 0 0
0 -1 0 0







0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0







0 0 0 0
1 0 0 0
0 0 0 0
0 0 -1 0







0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0







0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0







0 1 0 0
0 0 0 0
0 0 0 -1
0 0 0 0







0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0







0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0







0 0 1 0
0 0 0 -1
0 0 0 0
0 0 0 0







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0







0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







0 0 0 0
0 0 0 0
1 0 0 0
0 -1 0 0







0 0 0 0
1 0 0 0
0 0 0 0
0 0 -1 0







0 1 0 0
0 0 0 0
0 0 0 -1
0 0 0 0







0 0 1 0
0 0 0 -1
0 0 0 0
0 0 0 0







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




Orbit dimension

2

2

1

1

0

Figure 1. Diagrams of (Type A-)degenerations

We depict an isomorphism class of ε-representations by such representative matrix
Mα in the following. Figure 1 shows complete representative systems of orbits of
ε-representations in the different Lie types. Furthermore, all Type A-degenerations
≤deg between these ε-representations are depicted. In Types B and C, every such
Type-A-degeneration is indeed an ε-degeneration which can be seen by calculation
of ε-extensions ≤εExt or by describing explicit curves which go over from one orbit
into another. In Type D, however, the picture of ε-degenerations is different, since
ε-degenerations are not induced (see Proposition 4.1). Figure 4.4 shows the actual
orbit closure relations in R(A, V )〈−,−〉,ε; every connecting line stands for a relation
≤εdeg.

5. Conjectures

Following Example 4.4, we state the following (quite educated) conjectures about
degenerations for the seesaw algebra. In type C, this conjecture is built on work
of Gandini, Möseneder Frajria and Papi [10] and we aim to present a proof of
Conjecture 5.1 in a subsequent article.

Conjecture 5.1. Let A be the seesaw algebra.

• Type B (ε = 1 and n odd): Main Question 3.1 is true when restricted to
single GL•(V )-orbits in R(A, V ). We expect it to be true in general.

• Type C (ε = −1 and n even): Main Question 3.1 is true.

In Type D, by Proposition 4.1 we know that Main Question 2.3 is answered nega-
tively for every n. We note that the seesaw algebra is not representation-directed
[6].

Conjecture 5.2. Let A be representation-directed. Then Main Question 3.1 is true.
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O(5) SP(4) O(4)




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 -1 0 0 0







0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 -1 0







0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 -1
0 0 0 0 0







0 0 0 1 0
0 0 0 0 -1
0 0 0 0 0
0 0 0 0 0
0 0 0 0







0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




Orbit dimension

4

3

2

1

0




0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0







0 0 0 0
0 0 0 0
1 0 0 0
0 -1 0 0







0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0







0 0 0 0
1 0 0 0
0 0 0 0
0 0 -1 0







0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0







0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0







0 1 0 0
0 0 0 0
0 0 0 -1
0 0 0 0







0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0







0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0







0 0 1 0
0 0 0 -1
0 0 0 0
0 0 0 0







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0







0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







0 0 0 0
0 0 0 0
1 0 0 0
0 -1 0 0







0 0 0 0
1 0 0 0
0 0 0 0
0 0 -1 0







0 1 0 0
0 0 0 0
0 0 0 -1
0 0 0 0







0 0 1 0
0 0 0 -1
0 0 0 0
0 0 0 0







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




2

1

0

Figure 2. Diagrams of ε-degenerations
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