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1. Introduction

Let Ω ⊂ R
N , N ≥ 2, be an unbounded domain with non compact boundary ∂Ω.

We study the behaviour of nonnegative solutions in QT = Ω × (0, T ), T ≤ ∞, of the

following Neumann problem

(wβ)t − div(|Dw|m−1Dw) = wν , in QT , (1.1)

|Dw|m−1Dw · n = 0 , on ∂Ω × (0, T ) , (1.2)

wβ(x, 0) = wβ
0 (x) , in Ω , (1.3)

where 0 < β ≤ 1, m > 1, ν > 1, w0(x) ≥ 0 x ∈ Ω, with wβ
0 ∈ L1

loc(Ω); finally

n denotes the outer normal to ∂Ω. We are primarily concerned with existence or

non existence of global in time solutions, and with estimates of the finite speed of

propagation of the support of w. We show how these properties are connected with

the geometry of Ω.
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In fact, we work mostly with the following euivalent formulation, obtained by

changing variables. Setting u = wβ, we have from (1.1)–(1.3)

ut − c div(uα|Du|m−1Du) = uµ , in QT , (1.4)

uα|Du|m−1Du · n = 0 , on ∂Ω × (0, T ) , (1.5)

u(x, 0) = u0(x) , in Ω , (1.6)

where α = (1 − β)m/β ≥ 0, µ = ν/β > 1; c is a positive constant depending on m,

β.

Our approach relies on sharp integral estimates of solutions to the problems above,

which in turn are a consequence of embedding results involving geometrical properties

of the domain Ω. It is therefore natural to introduce the following quantity `(v),

obviously related to isoperimetrical inequalities in Ω

`(v) = inf{|∂G ∩Ω|N−1 : G ⊂ Ω , |G| = v , ∂G Lipschitz } , for all v > 0 ,

(we use the symbol | · | to denote the N dimensional Lebesgue measure, while the

N −1 dimensional Hausdorff measure is denoted by | · |N−1). We are going to assume

that `(v) > 0 for v > 0; in fact, all our arguments are given in terms of a continuous

function g satisfying

0 < g(v) ≤ `(v) , v > 0 , (1.7)

ω(v) :=
v

N−1
N

g(v)
is non decreasing for v > 0 . (1.8)

Let us also introduce the volume function V and its inverse R

V (ρ) = |Ωρ| , ρ > 0 , Ωρ = Ω ∩ {|x| < ρ} , R = V (−1) . (1.9)

Definition 1.1. Let Ω ⊂ R
N , N ≥ 2 be an unbounded connected open set, satisfying

|Ω| = ∞, with a Lipschitz continuous boundary ∂Ω, 0 ∈ ∂Ω. Assume moreover that

a function g ∈ C((0,∞)) is given, as in (1.7)–(1.8). Then we say that Ω belongs to

the class B1(g).
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Definition 1.2. The class B2(g) comprises all the domains Ω ∈ B1(g) which also

satisfy

c0
v

g(v)
≤ R(v) ≤ c1

v

g(v)
, for all v > 0, (1.10)

for two suitable constants c0, c1 > 0.

Assuming (1.10) essentially amounts to requiring that the volume V (ρ) is equivalent

to ρg(V (ρ)).

It is easy to see that the requirement `(v) > 0 rules out the case of Ω shaped like

an “infinite cusp” (with infinite volume). Then domains in the classes defined above

are sometimes referred to as “expanding” or “non-contracting” domains. Domains in

classes similar to B1(g), B2(g) were considered by Gushchin, see [7] and subsequent

papers.

Example (paraboloid-like domains). Let 0 ≤ h ≤ 1 be fixed, and define

Ω = {x ∈ R
N | |x′| < xh

N} , x′ = (x1, . . . , xN−1) . (1.11)

It follows from the results of [14], Chapter 4, that Ω ∈ B1(g), with

g(v) = γmin(v
N−1

N , vη) , v > 0 ; η =
h(N − 1)

1 + h(N − 1)
≤
N − 1

N
.

Thus in this case

ω(v) = γmax(1, v
N−1

N
−η) , v > 0 .

In fact, it is clear that Ω ∈ B2(g).

Note that Ω is a cone when h = 1, while it is a cylinder when h = 0. See also remarks

1.1, 3.1 for further comments on this class of examples.

Definition 1.3. We say that u is a weak solution of (1.4)–(1.6) if u ∈ L∞
loc(Ω×(0, T )),

u ∈ C((0, T );L2
loc(Ω)), uα|Du|m+1 ∈ L1

loc(Ω×(0, T )), and for all ζ ∈ C1(RN × [0, T ]),
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such that supp ζ is contained in a cylinder {|x| ≤ ρ <∞ , 0 ≤ t < T}, we have

T
∫

0

∫

� N

[−uζt + uα|Du|m−1Du ·Dζ − uµζ] dx dt = −

∫

� N

u0(x)ζ(x, 0) dx .

The notion of weak solution to (1.1)–(1.3), can be derived immediately from the

Definition above.

Let us also define for all q > 0

ψq := the inverse function over [0,+∞) of

Ψq(z) = z
α+m−1

q
+m+1

N ω(z)m+1 = z
α+m−1

q
+m+1g(z)−(m+1) , z ≥ 0 .

(1.12)

We denote in the following ψ = ψ1. We also use the notation ‖u‖p,G = ‖u‖Lp(G), and

denote by γ, γi i = 0, 1, . . . , generic positive constants, whose dependence on N , ν,

β, m, and c0, c1 in (1.10) is implicitly understood.

Let us state first our results on global solvability and blow up of solutions to (1.1)–

(1.3).

Theorem 1.1. Let us assume that Ω ∈ B1(g), and that ψ = ψ1 as in (1.12) satisfies

+∞
∫

ψ(z)−( ν
β
−1) dz < +∞ . (1.13)

Then problem (1.1)–(1.3) has a solution w defined for all positive times, provided the

initial datum fulfils

‖wβ
0‖1,Ω + ‖wβ

0‖q,Ω ≤ δ , (1.14)

where q > 1 is such that N(ν−m) < qβ(m+1), and δ = δ(N,m, β, ν, q, g) is chosen

suitably small. Moreover w satisfies

‖w(·, t)‖β
∞,Ω ≤ γ

‖wβ
0‖1,Ω

ψ(t‖wβ
0‖

m−β
β

1,Ω )

, for all t > 0. (1.15)

Theorem 1.2. Assume that Ω ∈ B1(g), ν > m, and that
∫

0

V
(

τ−
ν−m
m+1

)1/β
dτ <∞ . (1.16)
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Then all non negative solutions w to (1.1)–(1.3) become unbounded in a finite time (in

some bounded subset of Ω), excepting of course the trivial solution w ≡ 0, provided

we assume also that there exist a number 0 < λ < β(m + 1)/(ν − m), and a non

increasing function χ : (0,∞) → (0,∞) such that

C1χ(ρ) ≤ V (ρ)ρ−λ ≤ C2χ(ρ) , for large ρ, (1.17)

for two suitable positive constants C1, C2.

Remark 1.1. If Ω is a “paraboloid” as in (1.11), we can check that

(1.13) ⇔
b

Λ(b)
(µ− 1) > 1 , and (1.16) ⇔

b

Λ(b)
(µ− 1) < 1 , (1.18)

where Λ(b) = b(α + m − 1) + m + 1, b = 1 + h(N − 1) (we select λ = b and χ ≡ 1

in Theorem 1.2). Therefore the conditions we give for existence or non existence of

global solutions are sharp, at least for this class of examples. Let us note here that

we do not deal with the threshold case b(µ − 1) = Λ(b). The parameter ranges in

(1.18) should be compared with their counterparts in the case of the Cauchy problem

Ω = R
N , where it is known (at least if α = 0 or m = 1, see [2], [6]) that global

existence is possible if 1 < N(µ − 1)/Λ(N), while every non trivial solution blows

up in a finite time if 1 ≥ N(µ − 1)/Λ(N). We see that the homogeneous Neumann

problem in a cone (h = 1), respectively in a cylinder (h = 0), behaves like the Cauchy

problem in spatial dimension N , respectively in spatial dimension 1, at least from

this point of view. In fact, the Cauchy problem is covered by our methods, when one

takes g(v) = γ0v
N−1

N . Note, by contrast, that the Cauchy problem and the Dirichlet

problem in cones (with homogeneous boundary data) are different, see [12].

Remark 1.2. Provided we assume g to be smooth enough, we may change variable

t = ψ(z) in (1.13), and prove by integrating by parts that N(ν −m)/β(m + 1) ≥ 1

if (1.13) is fulfilled.

It follows from (1.16) that V (ρ)ρ−β m+1
ν−m → 0 as ρ→ ∞ (see (5.5)). Then our technical
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assumption (1.17) does not seem to be too restrictive, also in view of the examples

in Remark 1.1.

Due to the degeneracy of the equation, one expects solutions with compactly sup-

ported initial datum to exhibit the property of finite speed of propagation. In our

next result we give a sharp estimate for the support of u(·, t), for large t. Let us

define

Z(t) = inf{ρ > 0 | supp u(·, t) ⊂ Ωρ} , t > 0 .

Theorem 1.3. Assume Ω ∈ B2(g), and let the assumptions of Theorem 1.1 be sat-

isfied, for a suitable δ > 0 in (1.14). Moreover, we require that

suppw0 ⊂ Ωρ0 , for a given 0 < ρ0 <∞, (1.19)

and that g is non decreasing. Then, for all t > t̄ > 0, we have

γ0R(ψ(t‖wβ
0 ‖

m−β
β

1,Ω )) ≤ Z(t) ≤ γR(ψ(t‖wβ
0 ‖

m−β
β

1,Ω )) , (1.20)

and

‖w(·, t)‖β
∞,Ω ≥ γ0

‖wβ
0‖1,Ω

ψ(t‖wβ
0‖

m−β
β

1,Ω )

, (1.21)

where t̄ depends on ‖uβ
0‖1,Ω, ρ0 and N , m, β, g(1).

Note that (1.21) implies that the sup estimate (1.15) is sharp.

Remark 1.3. 1) If Ω ∈ B1(g) in Theorem 1.3, our proof still implies that

Z(t) ≤ γG0(ψ(t‖uβ
0‖

m−β
β

1,Ω )) , t > t̄ , where G0(s) = s/g(s) , s > 0 .

2) In fact, the assumption that g be monotonic can be relaxed somehow. We refer to

the proof in Section 6 below.

Remark 1.4. It is well known that equations containing nonlinear sources of the

type of (1.4), require local regularity conditions on the initial datum in order to be
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solvable (see [2] and the literature quoted therein; note that q is suitably large in

Theorem 1.1). The optimal regularity condition for initial data measures could be

found in the present setting by means of the methods of [1], but we do not dwell on

this point, as the main interest here is on the behaviour of solutions for large times.

Pioneering work on the subject of Neumann problem for parabolic equations in

unbounded domains is due to Gushchin [7], [8], and following papers, see [9], where

the author considered a class (close to our B1(g), B2(g)), of domains with non com-

pact boundary satisfying isoperimetrical inequalities essentially similar to (1.7), (1.8).

However, those papers were only concerned with the study of linear parabolic equa-

tions. For such equations, [8] gave the optimal stabilization rate as t → ∞, for

u ∈ L1(Ω) ∩ L∞(Ω).

For the degenerate case we treat in this paper, but without the nonlinear source

term, the optimal stabilization rate was given in [17], and finite speed of propaga-

tion was proven in [16], for solutions satisfying the global integrability requirement

|Du| ∈ L2(QT ), in the more general setting of higher order equations. Moreover,

in [16], Bernis’ approach [4] was employed, relying on a weighted interpolation tech-

nique, requiring in turn additional assumptions on Ω. Here we estimate the finite

speed of propagation by means of the method introduced in [3].

In Section 2, we establish some preliminary technical facts needed in the following.

In Section 3 we prove the essential a priori L∞ estimates for u. In Section 4 we prove

Theorem 1.1, and in Section 5 we give the proof of Theorem 1.2. Section 6 is devoted

to the proof of Theorem 1.3. Please, note that in sections 3, 4 and 6, we work with

formulation (1.4)–(1.6), while the setting (1.1)–(1.3) is used in Section 5.
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2. Preliminaries

Lemma 2.1. Let Ω ∈ B1(g), v ∈ L∞((0, T );Lr(Ω)), Dv ∈ (Lp(Ω))N , with p > 1,

r ≥ 1, and assume that sup(0,T )|supp v(·, t)| <∞. Then

T
∫

0

∫

Ω

|v|p+ pr
N dx dt ≤ γ sup

0<t<T

[

ω(|supp v(·, t)|)p

(
∫

Ω

|v(x, t)|r dx

)
p
N
]

T
∫

0

∫

Ω

|Dv|p dx dt ,

(2.1)

where the non decreasing function ω : [0,∞) → [0,∞) is given by ω(τ) = τ 1−1/N/g(τ),

and γ = γ(p, r, N).

Proof. We start from the “elliptic” embedding proven in [16], which we state in the

notation used here: Let v ∈ Lh(Ω) ∩ Ls(Ω), Dv ∈ (Lp(Ω))N . Then

‖v‖s,Ω ≤ γω(V )V
1
s
− 1

p
+ 1

N ‖Dv‖p,Ω , (2.2)

where s ≥ 1, s > h > 0, p > 1, s(N − p) ≤ Np, V = (‖v‖h,Ω‖v‖
−1
s,Ω)

hs
s−h , and

γ = γ(s, h, p, N). If we assume that |supp v| < ∞, we infer from an application of

Hölder’s inequality that V ≤ |supp v|. By using this estimate in (2.2) we get

‖v‖
1+ hs

s−h

(

1
s
− 1

p
+ 1

N

)

s,Ω ≤ γω(|supp v|)‖v‖
hs

s−h

(

1
s
− 1

p
+ 1

N

)

h,Ω ‖Dv‖p,Ω . (2.3)

To prove (2.1) we discriminate between the cases p < N and p ≥ N . If p < N , we

choose s = Np/(N − p), and use the corresponding specialisation of (2.3) as follows

T
∫

0

∫

Ω

|v(t)|p+ pr
N dx dt ≤

T
∫

0

(
∫

Ω

|v(t)|s dx

)
N−p

N
(
∫

Ω

|v(t)|r dx

)
p
N

dt

≤ γ

T
∫

0

ω(|supp v(t)|)p

(
∫

Ω

|v(t)|r dx

)
p
N
(
∫

Ω

|Dv(t)|p dx

)

dt ,

whence (2.1).

If p ≥ N , we may choose s = p+ pr/N > r, h = r, and check that (2.3) reduces to
∫

Ω

|v|s dx ≤ γω(|supp v|)p

(∫

Ω

|v|r dx

)
p
N
∫

Ω

|Dv|p dx ;
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(2.1) follows easily on integrating the above inequality, written for v = v(·, t), over

(0, T ). �

Remark 2.1. Estimates (2.1), (2.3), should be compared with the embeddings of

Chapter I of [11] and Chapter II of [5]. The embeddings given here reduce the ones

there when Ω is a cone, or R
N (so that ω is constant). See also [8] for the case p = 2.

Remark 2.2. In [16] the proof of (2.2) contains a formal mistake in the case p < h,

which can be easily fixed (we refer the reader to the proof of the embedding result in

the forthcoming paper [3]).

Lemma 2.2. Let {Yn}, n ≥ 0, be a sequence of non negative real numbers satisfying

Yn+1 ≤ CbnY 1+ε
n f(C1b

n
1Yn−1) , n ≥ 1 , (2.4)

where b > 1, and ε, C, C1, b1 > 0 are real numbers. We also assume Y1 ≤ Y0, and

that the function f : [0,∞) → [0,∞) is non decreasing. Then Yn → 0 as n → ∞,

provided

Cβ1+1/εY ε
0 f(C1β

2/εY0) ≤ 1 , β = max(b, bε1) . (2.5)

Proof. The claim made in the statement can be proven as Lemma 5.6 in Chapter II

of [11]. Anyway, for the reader’s convenience, we give here a short proof. We are in

fact going to show that

Yn ≤ β−n−1
ε Y0 , for all n ≥ 0 , (2.6)

whence the result, keeping in mind that β > 1 according to its definition in (2.5).

Of course (2.6) holds when n = 0, n = 1, because Y1 ≤ Y0 by assumption. Next we

proceed by induction, assuming it holds also for all 0 ≤ i ≤ n. We have

Yn+1 ≤ Cbn(β−n−1
ε Y0)

1+εf(C1b
n
1β

−n−2
ε Y0)

≤ (β−n
ε Y0)[Cβ

1+1/εY ε
0 f(C1β

2/εY0)] ≤ β−n
ε Y0 , (2.7)
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owing to (2.5). Therefore (2.6) is in force for i = n+1 too, and the proof is concluded.

�

We conclude this section with the following technical lemma, whose results are em-

ployed without further mention throughout the paper.

Lemma 2.3. For g as in (1.7) and ψq as in (1.12), we have for all z > 0

g(γz) ≤ γ
N−1

N g(z) , γ > 1 ; g(δz) ≥ δ
N−1

N g(z) , 0 < δ < 1 ; (2.8)

ψq(γz) ≤ γ
Nq
Kq ψq(z) , γ > 1 ; ψq(δz) ≥ δ

Nq
Kq ψq(z) , 0 < δ < 1 , (2.9)

Kq = N(α +m− 1) + q(m+ 1), q > 0.

Proof. The first inequality in (2.8) follows from

(γz)
N−1

N

g(γz)
≥
z

N−1
N

g(z)
,

which holds true because γ > 1 and ω is nondecreasing by assumption. From the

definition of Ψq and from (2.8), we infer at once

Ψq(γz) ≥ γ
N(α+m−1)+q(m+1)

Nq Ψq(z) , γ > 1 ,

whence we get the bound below for ψq(γz) in (2.9) (after redefining z, γ). The other

estimates are proven in the same way. �

3. The main a priori estimate

Lemma 3.1. Let u be a bounded solution to problem (1.4)–(1.6) in Ω2ρ × (0, t). Let

Q0 = Ω(1+σ)ρ × (t(1 − σ)/2, t), Q = Ωρ × (t/2, t), for a given 0 < σ < 1. Then, if

t

ρm+1
‖u‖α+m−1

∞,Q0
+ t‖u‖µ−1

∞,Q0
≤ 1 , (3.1)

we have for any q > 0

‖u‖∞,Q ≤ γ

(

t−1
∫∫

Q0
uq dx dτ

) 1
q

ψq

(

t
(

t−1
∫∫

Q0
uq dx dτ

)
α+m−1

q

)
1
q

, (3.2)
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where γ = γ(σ, q, N,m, α), and ψq : [0,∞) → [0,∞) has been defined in (1.12).

Proof. Let k > 0, q > 0 be constants, and let ζ ∈ C1(RN × R) be a standard cutoff

function satisfying

ζ ≡ 1 in Br′ × (t′, t) , supp ζ ⊂ Br′′ × (t′′, t) ,

0 ≤ ζ ≤ 1 , |Dζ| ≤ γ(r′′ − r′)−1 , 0 ≤ ζt ≤ γ(t′ − t′′)−1 ,

where 2ρ > r′′ > r′ > 0 and t > t′ > t′′ > 0 are given. If we choose (u − k)q
+ζ

m+1

as a testing function in the weak formulation of the problem, we get by standard

calculations (in fact also exploiting a Steklov averaging procedure)

sup
0<τ<t

∫

Ω(τ)

(u− k)q+1
+ ζm+1 dx+

t
∫

0

∫

Ω

uα|D(u− k)
q+m
m+1

+ ζ|m+1 dx dτ

≤ γ1

t
∫

0

∫

Ω

{

(u− k)q+1
+ ζmζτ + uα|Dζ|m+1(u− k)q+m

+ + uµ(u− k)q
+ζ

m+1
}

dx dτ .

(3.3)

In what follows we let for all n ≥ 0, Bn = {|x| < ρn}, Qn = (Ω ∩Bn)× (tn, t), where

ρn = ρ

(

1 +
σ

2n

)

, tn =
t

2

(

1 −
σ

2n

)

, kn = k

(

1 −
1

2n+1

)

,

so that {Qn} is a sequence of cylindrical domains interpolating between Q0 and Q.

We also denote by ζn a cut off function as above, with r′ = ρn, r′′ = ρn−1, t
′ = tn,

t′′ = tn−1, n ≥ 1. We obtain from (3.3), choosing k = kn+1, ζ = ζn+1 there,

sup
0<τ<t

∫

Ω(τ)

(u− kn+1)
q+1
+ ζm+1

n+1 dx + kα

t
∫

0

∫

Ω

|D(u− kn+1)
q+m
m+1

+ ζn+1|
m+1 dx dτ

≤ γ2
2nm

tσm+1

{

1 +
t

ρm+1
‖u‖α+m−1

∞,Q0
+ t‖u‖µ−1

∞,Q0

}
∫∫

Qn

(u− kn)q+1
+ dx dτ . (3.4)
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Next, as a consequence of the embedding Lemma 2.1, we establish the recursive

inequality which is the core of the proof. Define

An+1 = {(x, τ) ∈ Qn | u(x, τ) > kn+1} ⊂ R
N+1 ,

An+1(τ) = {x ∈ Ω ∩ Bn | u(x, τ) > kn+1} ⊂ R
N , Yn =

∫∫

Qn

(u− kn)q+1
+ dx dτ .

We find, on applying firstly Hölder’s inequality and then the embedding result just

quoted,

Yn+1 ≤

∫∫

Qn

(u− kn+1)
q+1
+ ζθ

n+1 ≤ |An+1|
1− q+1

λ





∫∫

Qn

(u− kn+1)
λ
+ζ

λθ
q+1

n+1 dx dτ





q+1
λ

≤ γ3|An+1|
1− q+1

λ

(

[

sup
tn<τ<t

ω(|An+1(τ)|)
m+1
(

∫

Ω(τ)

(u− kn+1)
q+1
+ ζm+1

n+1 dx
)

m+1
N
]

×

[

t
∫

0

∫

Ω

|D(u− kn+1)
q+m
m+1

+ ζn+1|
m+1 dx dτ +

2nm

ρm+1σm+1
‖u‖α+m−1

∞,Q0
k−αYn

]

)
q+1

λ

,

(3.5)

where θ > 1 is chosen large enough, and, as required by the embedding result,

λ = q +m+
(m + 1)(q + 1)

N
.

Note that λ > q + 1 due to the assumptions on m. We are going to exploit estimate

(3.4) in (3.5); we also need the following consequences of Chebichev’s inequality (and

of the definition of kn)

|An+1| ≤ γ42
n(q+1)k−q−1Yn ,

|An+1(τ)| ≤ γ52
n(q+1)k−q−1

∫

Bn(τ)

(u− kn)
q+1
+ dx ≤ γ6

2n(m+q)k−q−1

tσm+1
Yn−1 , n ≥ 1 .

In the last inequality we have made use again of (3.4), as well as of assumption

(3.1). Collecting the estimates above we have for n ≥ 1, after elementary algebraic
12



calculations,

Yn+1 ≤ γ7b
nk−

q+1
λ

(α+λ−q−1) Y
1+ (q+1)(m+1)

λN
n

(tσm+1)
q+1

λ

(

1+ m+1
N

)ω
(

γ8b
n
1

k−q−1

tσm+1
Yn−1

)(m+1) q+1
λ ,

with b, b1 suitable constants. According to Lemma 2.2, we have Yn → 0 as n → ∞,

provided k is chosen in such a way that the formula corresponding to (2.5) is fulfilled.

More specifically, we choose k so as to have

γ9k
− q+1

λ
(α+λ−q−1)

‖u‖
(q+1) (q+1)(m+1)

λN

q+1,Q0

(tσm+1)
q+1

λ

(

1+ m+1
N

)ω
(

γ10
k−q−1

tσm+1
‖u‖q+1

q+1,Q0

)(m+1) q+1
λ = 1 . (3.6)

Note that the left-hand side of (3.6) is decreasing in k, and that ‖u‖∞,Q ≤ k, because

Yn → 0, so that

γ9‖u‖
−(α+λ−q−1)
∞,Q

‖u‖
(q+1) m+1

N

q+1,Q0

(tσm+1)1+ m+1
N

ω
(

γ10

‖u‖−q−1
∞,Q

tσm+1
‖u‖q+1

q+1,Q0

)m+1
≥ 1 . (3.7)

In order to conclude the proof let us define

r0 = ρ , ri+1 = ri + 2−i−1σρ , t0 = t/2 , ti+1 = ti − 2−i−2σt , i ≥ 0 ,

Qi = (Ω ∩ {|x| < ri}) × (ti, t) ⊂ Qi+1 ⊂ Q0 , Ui = ‖u‖∞,Qi ,

so that Q0 = Q, and ri → (1+σ)ρ, ti → (1−σ)t/2 as i→ ∞. In fact, estimate (3.7)

has been proven for the pair of cylinders Q, Q0 for the sake of notational simplicity,

but we are going to apply it for a suitable pair Qj, Qj+1. Indeed, we define the integer

j as follows, for a δ ∈ (0, 1) to be chosen:

j = 0 , if U0 ≥ δU1 ,

j = sup{k ≥ 1 | Ui−1 < δUi for all 1 ≤ i ≤ k} , if U0 < δU1 .

We may assume that j is finite, as we would have otherwise ‖u‖∞,Q ≤ δi‖u‖∞,Q0 for

all i > 0, implying u ≡ 0 in Q, and therefore, trivially, (3.2). Then we have

a) Uj+1 ≤ δ−1Uj , b) U0 ≤ δjUj , (3.8)
13



and also

‖u‖q+1
q+1,Qj+1 ≤ Uj+1‖u‖

q
q,Qj+1 ≤ δ−1Uj‖u‖

q
q,Q0

, (3.9)

by virtue of part a) of (3.8). (Here we use the notation ‖u‖q,Q even if q < 1.) It is

clear that we may formally replace in (3.7) Q with Qj, and Q0 with Qj+1, of course

also replacing σ with 2−(j+1)σ because of the change in the geometry. If we also use

(3.9) in the resulting inequality, we find

γ9U
−(α+m−1+ m+1

N
q)

j δ−
m+1

N

‖u‖
q m+1

N

q,Q0

(t2−(j+1)(m+1)σm+1)1+ m+1
N

×

ω
(

γ10

U−q
j

t2−(j+1)(m+1)σm+1
δ−1‖u‖q

q,Q0

)m+1
≥ 1 . (3.10)

Finally we make use of part b) of (3.8), obtaining

γ̃γ̄jU
−(α+m−1+ m+1

N
q)

0

‖u‖
q m+1

N

q,Q0

(tσm+1)1+ m+1
N

ω
(

γ̃1γ̄
j
1

U−q
0

tσm+1
‖u‖q

q,Q0

)m+1
≥ 1 , (3.11)

where now γ̃, γ̃1 depend on δ too, and

γ̄ = δα+m−1+ m+1
N

q2(m+1)(1+ m+1
N

) , γ̄1 = δq2m+1 .

If we choose δ so that γ̄ ≤ 1, γ̄1 ≤ 1, the left-hand side of (3.11) does not depend

essentially on j. In other words, the constants γ̃, γ̄j, γ̃1 and γ̄j
1 can be estimated a

priori in terms of the parameters m, q, N , α and µ only. Estimate (3.2) follows now

from (3.11), upon a simple step of functional inversion. �

Remark 3.1. In the example of paraboloid-like domains pointed out in the Introduc-

tion, we have g(τ) = γmin(τ
N−1

N , τ η); then we see that (3.2) takes the form

‖u‖∞,Q ≤ γmax(W1/N ,W1−η) , (3.12)

where for s > 0 we set

Ws = t−
1

α+m−1+qs(m+1)

(

t−1

∫∫

Q0

uq dx dτ
)

s(m+1)
α+m−1+qs(m+1)

,

under the assumptions stated in Lemma 3.1.
14



4. Proof of Theorem 1.1

We have gathered some essential technical facts in the following

Lemma 4.1. Let ψq be as in (1.12), q > 0; let U , s, θ, t denote positive numbers;

Kq is the constant defined in Lemma 2.3. Then

D(U) := U s/ψq(U
α+m−1) is non decreasing in U > 0 for s ≥ s0,

s0 := Nq(α +m− 1)/Kq . Also, D(0+) = 0, if s > s0.
(4.1)

J :=

t
∫

0

ψq(τU
α+m−1)−θ dτ ≤ γtψq(tU

α+m−1)−θ <∞ , if Nqθ < Kq. (4.2)

Assume I(U) :=

b
∫

a

U θψq(τU
α+m−1)−θ/q dτ <∞, for all U > 0,

for some fixed 0 ≤ a < b ≤ ∞. Then I(U) → 0 as U → 0.

(4.3)

Proof. (4.1): Define z = ψq(U
α+m−1); then we have to show that Ψq(z)

s/(α+m−1)/z is

non decreasing in z. But this is an obvious consequence of the choice s ≥ s0, and of

(1.8), once we write explicitly

D(U) = z
s
q
+ s(m+1)

N(α+m−1)
−1
ω(z)

s(m+1)
α+m−1 . (4.4)

By the same token, D(0+) = 0 if s > s0, keeping in mind that z → 0 if U → 0.

(4.2): We may use (4.1) to calculate

J =

t
∫

0

[

(τ
1

α+m−1U)s0

ψq(τUα+m−1)

]θ
dτ

(τ
1

α+m−1U)s0θ
≤

[

(t
1

α+m−1U)s0

ψq(tUα+m−1)

]θ
t1−

θs0
α+m−1

U s0θ
(

1 − θs0

α+m−1

) .

(4.3): This follows obviously from (4.1), and from I(U) <∞, if we take into account

that q > s0 and that

U θψq(τU
α+m−1)−θ/q = [U qψq(τU

α+m−1)−1]θ/q .

�
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Let us introduce the sequence of approximating solutions un ≥ 0, n ≥ 1, where un

solves

ut − c div(uα|Du|m−1Du) = min(uµ, n) , in Ωn × (0,∞) ,

uα|Du|m−1Du · n = 0 , on ∂Ω ∩ ∂Ωn , u = 0 , on Ω ∩ ∂Ωn ,

u(x, 0) = u0n(x) , in Ωn ,

and u0n ∈ C∞(Ωn), with u0n → u0 in L1(Ω)∩Lq(Ω); note that we always understand

un to be defined over Ω, by setting un ≡ 0 out of Ωn.

It follows from the results of [18] that the problem above is globally solvable. In the

following, for the sake of simplicity, we denote un = u. Note that Lemma 3.1 can be

applied to u; more precisely, no localization in space is necessary in the present case,

due to the global integrability information stated in (1.14). Therefore, assumption

(3.1) can be replaced with

t‖u(·, t)‖µ−1
∞,Ω ≤ 1 , (4.5)

and the sup and integral norms in (3.2) are global norms inΩ. Let T be the supremum

of all times t̄ such that (4.5) holds for all t ≤ t̄. Our goal is to show that T = ∞. Then

we may apply Lemma 3.1 and the global estimates of the integral norms of u proven

below to infer, with the help of the results of [10], [15], that {un} is equicontinuous in

every compact subset of Ω×(0, T ). Moreover integral gradient estimates for u follows

as in [2], [3]. With the help of these estimates, and exploiting the monotonicity of the

operator, we can pass to the limit in the weak formulation of the problem written for

un (perhaps extracting a suitable subsequence), thereby obtaining a global solution

u.
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Multiplying the differential equation satisfied by u against us−1, s ≥ 1 (here u0 ≡ 1

by convention), and integrating over Ωn × (0, t), we find for 0 < t < T

∫

Ω(t)

us dx ≤

∫

Ω

us
0n dx + γ

t
∫

0

∫

Ω

uµ+s−1 dx dτ ≤

∫

Ω

us
0n dx d + γΦs(t)Ξ(t) , (4.6)

Ξ(t) :=

t
∫

0

Φq(τ)
µ−1

q

ψq(τΦq(τ)
α+m−1

q )
µ−1

q

dτ ,

where we have used the sup bound for u of Lemma 3.1, and we defined

Φs(t) = sup
0<τ<t

∫

Ω(τ)

us(x, τ) dx , s ≥ 1 .

Also note that Ξ(t) < ∞ as a consequence of (4.2), and of the choice of q. In fact

the assumption in (4.2), i.e., Nqθ < Kq, with θ = (µ − 1)/q, is equivalent to the

restriction placed on q in the statement of Theorem 1.1 (recall the definition of Kq

in Lemma 2.3). Take s = q in (4.6); of course we may assume ‖u0n‖q,Ω ≤ γ‖u0‖q,Ω.

Then, defining

T0 = sup{t > 0 | Ξ(t) ≤ ε} ,

for a sufficiently small ε > 0, we have from (4.6)

Φq(t) ≤ γ1‖u0‖q,Ω , 0 < t < min(T, T0) . (4.7)

Thus T0 ≥ min(T, T ′
0), where T ′

0 is defined by

γ2(γ1)

T ′
0
∫

0

‖u0‖
µ−1
q,Ω

ψq(τ‖u0‖
α+m−1
q,Ω )

µ−1
q

dτ = ε

(we are using (4.1) with s = q). Moreover, if t < min(T, T ′
0), we also have (recalling

that ψq is non decreasing)

t‖u(·, t)‖µ−1
∞,Ω ≤ γ

t‖u0‖
µ−1
q,Ω

ψq(t‖u0‖
α+m−1
q,Ω )

µ−1
q

≤ γ

t
∫

0

‖u0‖
µ−1
q,Ω

ψq(τ‖u0‖
α+m−1
q,Ω )

µ−1
q

dτ ≤
1

2
, (4.8)
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provided ε is redefined if necessary. Thus T ′
0 ≤ T ; in turn, we may assume T ′

0 > 1,

invoking (4.2), (4.3) and perhaps changing δ in the statement. Incidentally, note that

T ′
0 does not depend on n: in its definition u0 is the original datum.

We can now proceed to estimate the L1(Ω) norm of u, uniformly in t; for small

t we use (4.6) again, but choosing now s = 1 there. From the arguments above we

infer
∫

Ω(t)

u dx ≤ γ5

∫

Ω

u0 dx , for 0 < t < T ′
0. (4.9)

Moreover, we have as in (4.6)

∫

Ω(t)

u dx ≤

∫

Ω(1)

u dx+ γ6

t
∫

1

Φ1(τ)
µ

ψ(τΦ1(τ)α+m−1)µ−1
dτ , 1 < t < T . (4.10)

From (4.9), (4.10) we get

Φ1(t) ≤ γ5‖u0‖1,Ω + γ6

t
∫

1

Φ1(τ)
µ

ψ(τ‖u0‖
α+m−1
1,Ω )µ−1

dτ , 1 < t < T .

Then Φ1(t) is majorised for T > t > 1 by the increasing function y(t), where y solves

{

y′ = γ6y
µψ(t‖u0‖

α+m−1
1,Ω )−µ+1 , t > 1 ,

y(1) = γ5‖u0‖1,Ω .

It follows from the explicit representation

y(t) = y(1)
[

1 − γ7y(1)µ−1

t
∫

1

ψ(τ‖u0‖
α+m−1
1,Ω )−µ+1 dτ

]−1/(µ−1)

, t ≥ 1 . (4.11)

that y is defined and bounded over (1,∞), provided δ in (1.14) is chosen small enough,

which we are going to assume. Indeed, (4.3) and (1.13) imply that the quantity in

brackets in (4.11) is bounded away from zero, if δ is small enough. It is therefore

clear that we have Φ1(t) ≤ γ8‖u0‖1,Ω for all 1 < t < T ; then for all such t, invoking
18



(4.3),

t‖u(·, t)‖µ−1
∞,Ω ≤ γ9t

‖u0‖
µ−1
1,Ω

ψ(t‖u0‖
α+m−1
1,Ω )µ−1

= γ9(t− 1 + 1)
‖u0‖

µ−1
1,Ω

ψ(t‖u0‖
α+m−1
1,Ω )µ−1

≤ γ9

∞
∫

1

‖u0‖
µ−1
1,Ω

ψ(τ‖u0‖
α+m−1
1,Ω )µ−1

dτ + γ9

‖u0‖
µ−1
1,Ω

ψ(‖u0‖
α+m−1
1,Ω )µ−1

≤
1

2
, (4.12)

by possibly redefining δ. The definition of T and (4.12) would yield a contradiction

if T <∞. Therefore T = ∞ and the proof is concluded.

5. Proof of Theorem 1.2

We use here the formulation (1.1)–(1.3). We define V∗(ρ) = max(V (ρ), 1). We may

assume without loss of generality that V (1) = 1, and that (1.17) holds true for ρ ≥ 1.

Recalling (1.16), we also set

f(w) = h(w)−ε :=





w
∫

0

V∗(τ
− ν−m

m+1 )1/β dτ





−ε

, w > 0 ; f(w) = 0 , w = 0 ,

with 0 < ε < 1 to be chosen. Let ζ ∈ C∞
0 (RN ), ζ ≡ 0 for |x| ≥ ρ, ζ ≡ 1 for |x| ≤ ρ/2,

0 ≤ ζ ≤ 1, |Dζ| ≤ γ/ρ. We may take f(w)ζs, s > m + 1, as a testing function in

(1.1) (in fact an easy approximation argument should be employed here). Setting

ϕ(w) =

w
∫

0

τβ−1f(τ) dτ ,

we find

β
d

dt

∫

Ω(t)

ϕ(w)ζs dx = −

∫

Ω(t)

|Dw|m+1f ′(w)ζs dx− s

∫

Ω(t)

|Dw|m−1Dw ·Dζζs−1f(w) dx

+

∫

Ω(t)

wνf(w)ζs dx =: J1 + J2 + J3 .

We bound |J2| by means of Young’s inequality, and of

Fact 5.1. w
ε
≤ f(w)

|f ′(w)|
≤ γw, for all w > 0,
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(the proofs of Fact 5.1, and of other technical Facts, are gathered at the end of this

section). We find

β
d

dt

∫

Ω(t)

ϕ(w)ζs dx ≥ −
γ1

ρm+1

∫

Ω(t)

f(w)wmζs−m−1 dx+

∫

Ω(t)

wνf(w)ζs dx . (5.1)

Note that, if 0 < s1m < s−m− 1, we can use in (5.1)

wmf(w)ζs−m−1 ≤ [wζs1]mf(wζs1) ,

because f is decreasing and 0 ≤ ζ ≤ 1. Next we may apply the inequality in p. 331

of [13] to the function zΦ(z), where

Fact 5.2. Φ is defined by Φ(zν−m) = zmf(z), so that if ε is small

aΦ(b) ≤ σaΦ(a) + γ(σ)bΦ(b) , for all σ ∈ (0, 1), a, b > 0.

Then we find for all 1 > σ > 0

ρ−m−1Φ((wζs1)ν−m) ≤ σ(wζs1)ν−mΦ((wζs1)ν−m) + γ(σ)ρ−m−1Φ(ρ−m−1)

≤ γσwνζs1ν−s1εf(w) + γ(σ)ρ−ν m+1
ν−m f(ρ−

m+1
ν−m ) ,

where we have also used

Fact 5.3. f(wζs1) ≤ γ2ζ
−εs1f(w).

By choosing s1(ν − ε) = s, which is consistent with the condition s1m < s−m− 1 if

s is taken large enough and ε is small enough so as to have ν − ε > m, we get from

(5.1), also selecting a suitable σ,

β
d

dt

∫

Ω(t)

ϕ(w)ζs dx ≥ −γ3
V (ρ)

ρν m+1
ν−m

f
(

ρ−
m+1
ν−m

)

+
1

2

∫

Ω(t)

wνf(w)ζs dx . (5.2)

Next, we note that

Fact 5.4. (β − ε)−1zβf(z) ≥ ϕ(z) ≥ β−1zβf(z), for all z > 0 provided ε < β.

Then for ε < β/2, we have wνf(w) ≥ (β/2)Θ(ϕ(w)), where
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Fact 5.5. the function Θ defined by Θ(ϕ(z)) = zν−βϕ(z), z > 0, is convex, if 2ε < ν.

Then, by Jensen inequality,

Θ(λ(t)) ≤

∫

Ω(t)

ζsΘ(ϕ(w)) dx
(

∫

Ω

ζs dx
)−1

, λ(t) :==

∫

Ω(t)

ζsϕ(w) dx
(

∫

Ω

ζs dx
)−1

.

Using the inequalities above in (5.2), we infer that

λ′(t) ≥
1

4
Θ(λ(t)) − P (ρ)

(

∫

Ω

ζs dx
)−1

, (5.3)

where −P (ρ) is the first term on the right hand side of (5.2). It follows from (5.3),

and from

Fact 5.6.
∫ +∞

Θ(z)−1 dz <∞,

that we have blow up of λ(t) in a finite time, unless

Θ(λ(t)) ≤ 4P (ρ)
(

∫

Ω

ζs dx
)−1

, (5.4)

for all t > 0, ρ > 0. Then, we take into account that the inverse function H of Θ

satisfies

Fact 5.7. H(γz) ≤ γH(z), for all z > 0, γ > 1.

Set Z0 =
∫

Ω
ζs dx, and note that V (ρ)/Z0 > 1. We conclude from (5.4) and Fact 5.4,

that for ρ > 1,
∫

Ω(t)

ζsϕ(w) dx ≤ Z0H(4P (ρ)Z−1
0 ) ≤ 4γ3V (ρ)H

(

f
(

ρ−
m+1
ν−m

)

ρ−ν m+1
ν−m

)

≤ γ4V (ρ)H

(

ϕ
(

ρ−
m+1
ν−m

)

ρ−(ν−β) m+1
ν−m

)

= γ4V (ρ)ϕ(ρ−
m+1
ν−m )

≤ γ5V (ρ)ρ−β m+1
ν−m

[

ρ−
m+1
ν−mV (ρ)1/β

]−ε
= γ5

[

ρ−
m+1
ν−mV (ρ)1/β

]β−ε
=: ξ(ρ) ,
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where we have used also the definitions of f , V∗. We conclude the proof by noting

that ξ(ρ) → 0 as ρ→ ∞, if β > ε, owing to (1.16) and to

ρ−
m+1
ν−mV (ρ)1/β = tV (t−

ν−m
m+1 )1/β ≤

t
∫

0

V (τ−
ν−m
m+1 )1/β dτ , (5.5)

where t = ρ−
m+1
ν−m → 0 as ρ→ ∞.

Proof of Fact 5.1 We have immediately

f(w)

|f ′(w)|
=

1

ε

∫ w

0
V∗(τ

−δ)1/β dτ

V∗(w−δ)1/β
≥
w

ε
, (5.6)

because V∗ is obviously increasing; here δ = (ν−m)/(m+1). If w ≤ 1, then w−δ ≥ 1

and we get from assumption (1.17)

w
∫

0

V∗(τ
−δ)1/β dτ =

w
∫

0

V (τ−δ)1/β dτ = w

1
∫

0

(

V (s−δw−δ)

(s−δw−δ)λ

)1/β

(s−δw−δ)λ/β ds

≤ C
1/β
2 w

1
∫

0

χ(s−δw−δ)1/β(s−δw−δ)λ/β ds

≤
C

1/β
2

C
1/β
1

w

(

V (w−δ)

w−δλ

)1/β
w−δλ/β

1 − δλ/β
≤ γwV (w−δ)1/β .

If w > 1, we have however

w
∫

0

V∗(τ
−δ)1/β dτ =

1
∫

0

V (τ−δ)1/β dτ + w − 1 ≤ γ̃ + w ≤ (γ̃ + 1)wV∗(w
−δ)1/β .

We conclude by substituting the estimates above in (5.6).

Proof of Fact 5.2 As remarked in [13], the sought after inequality is an elementary

consequence of zΦ′(z) ≥ δΦ(z), for a suitable δ > 0. In turn, the last bound is proven

immediately, for all z > 0, by differentiating Φ, and using the already proven fact

wf ′(w) ≥ −εf(w), with small ε.

Proof of Fact 5.3 We have, with δ = (ν −m)/(m + 1),

h(wζs1) ≥ wζs1V∗((wζ
s1)−δ)1/β ≥ wζs1V∗(w

−δ)1/β ≥ γ0ζ
s1h(w) ,
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whence the claim follows.

Proof of Fact 5.4 From Fact 5.1 and integrating by parts one gets

ϕ(z) ≥ −
1

ε

z
∫

0

τβf ′(τ) dτ = −
zβ

ε
f(z) +

β

ε
ϕ(z) ,

proving the upper bound for ϕ. The lower bound follows trivially from the definition,

recalling that f is decreasing.

Proof of Fact 5.5 Obviously we have Θ(z) = zη(z)ν−β, where η is the inverse function

of ϕ. After lengthy but trivial calculations we find

Θ′′(z) = (ν − β)
η(z)ν−2β

f(η(z))2

{

2f(η(z)) + (ν − 2β)zη(z)−β − zη(z)1−βf ′(η(z))
}

.

Clearly, Θ′′ ≥ 0 if ν ≥ 2β, because f ′ < 0. If ν < 2β, we recall from Fact 5.4 that

(β − ε)zη(z)−β ≤ f(η(z)); therefore certainly Θ′′ ≥ 0 provided 2 ≥ (2β − ν)/(β − ε),

which amounts to 2ε ≤ ν.

Proof of Fact 5.6 If we define η as in the proof of Fact 5.5, we have
∞
∫

1

dz

Θ(z)
=

∞
∫

1

dz

zη(z)ν−β
=

∞
∫

η(1)

rβ−1f(r)

ϕ(r)rν−β
dr ≤ β

∞
∫

η(1)

dr

rν−β+1
<∞ ,

because ν − β + 1 ≥ ν > 1.

Proof of Fact 5.7 We may calculate directly

t
H ′(t)

H(t)
=

t

t + (ν − β)tH(t)η(H(t))−βf(η(H(t)))−1
≤ 1 ,

whence the claim follows upon integrating H ′(t)/H(t) ≤ 1/t over (z, γz).

6. Proof of Theorem 1.3

We define a sequence of cutoff functions ζn, n ≥ 0, so that

ζn(x) = 1 , x ∈ Ωρn
\Ωρ̄n

, ζn(x) = 0 , x 6∈ Ωρn−1 \Ωρ̄n−1 , |Dζn| ≤ γ2n/(σρ) ,

where 0 < σ < 1/2 is given and, for ρ0 as in the statement,

ρn = ρ+ σ2−nρ , ρ̄n = (ρ− σ2−nρ)/2 , n ≥ 0 , ρ > 4ρ0 .
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Note that ρn ≥ ρn+1 ≥ ρ, ρ̄n ≤ ρ̄n+1 ≤ ρ/2, n ≥ 0. Also, the support of each ζn

is bounded away from the support of u0. If we use the testing function ζm+1
n uθ in

the weak formulation of problem (1.4)–(1.6), where 0 < θ < (m + 1)/N , we find by

means of straightforward calculations

sup
0<τ<t

∫

Ω(τ)

u1+θζm+1
n dx +

t
∫

0

∫

Ω

uα+θ−1|Du|m+1ζm+1
n dx dτ

≤ γ
2n(m+1)

(ρσ)m+1

t
∫

0

∫

Ωρn−1\Ωρ̄n−1

um+α+θ dx dτ + γ

t
∫

0

∫

Ω

uµ+θζm+1
n dx dτ =: A1 + A2 . (6.1)

As a first remark, we note that

A2 ≤ γ

t
∫

0

‖u(·, τ)‖µ−1
∞,Ω dτ sup

0<τ<t

∫

Ω(τ)

ζm+1
n u1+θ dx .

Thus, reasoning as in the proof of Theorem 1.1 (see (4.8) and (4.12)), we may guar-

antee that

A2 ≤
1

2
sup

0<τ<t

∫

Ω(τ)

ζm+1
n u1+θ dx , (6.2)

for all t > 0, provided δ in (1.14) is small enough. Therefore, in (6.1) we may absorb

the term A2 into the left hand side. Then, on setting vn = u
α+m+θ

m+1 ζs
n, for a sufficiently

large s > 1, we have for n ≥ 1

Yn := sup
0<τ<t

∫

Ω(τ)

vε
n dx+

t
∫

0

∫

Ω

|Dvn|
m+1 dx dτ ≤

γ12
n(m+1)

(ρσ)m+1

t
∫

0

∫

Ω

vm+1
n−1 dx dτ , (6.3)

where ε = (m+ 1)(1 + θ)/(α+m + θ). We introduce the increasing functions

F1(s) = sm+ m+1
ε g
(

s−1
)m+1

, F2(s) =
[

F
(−1)
1 (s)

]
m+1−ε

ε .

The monotonic characyer of F1 follows from (1.8), and from ε < m + 1. Next we

apply the embedding (2.2) with h = ε, s = m + 1, p = m + 1, v = vn−1(·, τ). After
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integrating in time the resulting inequality, and defining

E(t) =

t
∫

0

(
∫

Ω(τ)

vε
n−1 dx

)
m+1

ε

dτ , I(t) =

t
∫

0

∫

Ω

|Dvn−1|
m+1 dx dτ ,

we find, making use of Jensen’s inequality,

t
∫

0

∫

Ω

vm+1
n−1 dx dτ ≤ γ2

t
∫

0

(
∫

Ω(τ)

vε
n−1 dx

)
m+1

ε

F2

(∫

Ω(τ)
|Dvn−1|

m+1 dx
( ∫

Ω(τ)
vε

n−1 dx
)

m+1
ε

)

dτ

≤ γ3E(t)F2

(

I(t)

E(t)

)

. (6.4)

Note that we assume provisionally here that

F
(−1)
2 is convex,

We prove at the end of this section that this extra assumption can be removed. We

have also used

F2(γs) ≤ γF2(s) , for all s > 0, γ > 1.

which is a consequence of the definition of F2, and of the second estimate in (2.8).

Again by the definitions of F1, F2 and from (1.8), we infer that for any fixed A > 0

s 7→ sF2

(A

s

)

is non decreasing for s > 0. (6.5)

Next we apply (6.4) in (6.3), using (6.5) and the obvious inequalities E(t) ≤ tY
(m+1)/ε
n−1 ,

I(t) ≤ Yn−1 to bound the last term in (6.4). We find

Yn ≤ γ1γ3
2n(m+1)

(ρσ)m+1
tY

m+1
ε

n−1 F2

(

1

tY
m+1−ε

ε

n−1

)

≤ γ42
n(m+1)ρ−m−1t

(1+θ)(m+1)
K1+θ Y

1+ (α+m−1)(m+1)
K1+θ

n−1 f0(tY
α+m−1

1+θ

n−1 ) , (6.6)

where (recalling that Kq has been introduced in Lemma 2.3), by definition,

f0(s) =

[

F
(−1)
1

(1

s

)

s
N(1+θ)
K1+θ

]
α+m−1

1+θ

, s > 0 .

25



It follows from (1.8) and the definition of F1 that f0 is non decreasing. Moreover,

reasoning as in (6.1), (6.2), we have for all n ≥ 0,

Yn ≤ γ52
n(m+1)I0 , I0 =

1

ρm+1

t
∫

0

∫

Ω2ρ

um+α+θ dx dτ . (6.7)

Combining (6.6), (6.7) with the elementary inequality

f0(γs) ≤ [F−1
1 (s−1)]

α+m−1
1+θ (γs)

N(α+m−1)
K1+θ ≤ γf0(s) , γ > 1 , s > 0

(indeed N(α +m− 1) < K1+θ), we infer

Yn ≤ γ6b
nρ−m−1t

(1+θ)(m+1)
K1+θ Y

1+
(α+m−1)(m+1)

K1+θ

n−1 f0(tI
α+m−1

1+θ

0 ) , b > 1 .

Hence, invoking Lemma 5.6 Chapter II [11], we have that Yn → 0 n → ∞, i.e.,

u(x, t) = 0, x ∈ Ωρ \Ωρ/2, provided

Y0 ≤ γ0

[

ρ−m−1t
(1+θ)(m+1)

K1+θ f0(tI
α+m−1

1+θ

0 )

]−
K1+θ

(α+m−1)(m+1)

. (6.8)

One can employ the inequality Y0 ≤ γI0, and the definitions of F1, f0, to show that

(6.8) is implied by

G0

(

1/F
(−1)
1

(

(tI
α+m−1

1+θ

0 )−1
)

)

≤ γ7ρ , where G0(s) = s/g(s) , s > 0 . (6.9)

Next we estimate, using (4.2),

I0 ≤ γ8
‖u0‖1,Ω

ρm+1

t
∫

0

‖u0‖
m+α+θ−1
1,Ω dτ

ψ(τ‖u0‖
α+m−1
1,Ω )m+α+θ−1

≤ γ9

t‖u0‖
m+α+θ
1,Ω

ρm+1ψ(t‖u0‖
α+m−1
1,Ω )m+α+θ−1

(6.10)

(here we exploit the restriction θ < (m+ 1)/N). On substituting I0 in (6.9) with the

bound given in (6.10), one can see, by means of routine calculations, that (6.9) is in

fact fulfilled for

ρ ≥ γ10G0(ψ(t‖u0‖
α+m−1
1,Ω )) , (6.11)

for a large enough constant γ10. We remark that G0 does not depend on θ in (6.11),

and that the restriction ρ > 4ρ0 is included in (6.11), provided t > t̄, for a suitable
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t̄ > 0. The proof of the bound above for Z is concluded by noting that G0 ' R if

Ω ∈ B2(g).

In order to prove the bounds below, for u and for Z, we proceed as follows. We

have

‖u0‖1,Ω ≤

∫

Ω

u(x, t) dx ≤ V (Z(t))‖u(·, t)‖∞,Ω ≤ γψ(t‖u0‖
α+m−1
1,Ω )‖u(·, t)‖∞,Ω ,

(6.12)

from the bound above for Z, and the definitions of the functions V , R. Note that

the first inequality in (6.12) can be proven by standard arguments, exploiting also

the fact that u( · , t) is compactly supported. This shows that the bound (1.15) is

optimal. Finally, by the same token,

V (Z(t)) ≥
‖u0‖1,Ω

‖u(·, t)‖∞,Ω
≥ γ0ψ(t‖u0‖

α+m−1
1,Ω ) ,

immediately implying the sought after bound below for Z.

In order to complete the proof, we need remove the assumption F
(−1)
2 convex. This

is the only step where we employ the monotonicity of g. Note that

F
(−1)
2 (s) = s1+

(m+1)(1+θ)
α+m−1 g

(

s−
1+θ

α+m−1

)m+1
, s > 0 ,

and define

φ(s) =

s
∫

0

dτ

τ

τ
∫

0

y
(m+1)(1+θ)

α+m−1 g
(

y−
1+θ

α+m−1

)m+1
dy .

We may minorize, exploiting the fact that g is non decreasing,

φ(s) ≥

s
∫

0

dτ

τ

τ
∫

0

y
(m+1)(1+θ)

α+m−1 dy g
(

s−
1+θ

α+m−1

)m+1
≥ γ0F

(−1)
2 (s) .

On the other hand, zm+1g(z−1)m+1 is non decreasing in z, so that

φ(s) ≤

s
∫

0

1

τ
τ 1+

(m+1)(1+θ)
α+m−1 g

(

τ−
1+θ

α+m−1

)m+1
dτ ≤ F

(−1)
2 (s) . (6.13)
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Finally, φ′′(s) ≥ 0 follows from elementary differentiation, and reasoning as in (6.13).

Therefore, we may replace F
(−1)
2 with φ when invoking Jensen’s inequality, and then

switch back to F
(−1)
2 again, exploiting the two sided estimate just proven.
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