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Introduction

This dissertation is devoted to the study of developments in series in the form

(1)
∞

∑
i=1

xi

qi

with the coefficients xi belonging to a finite set of positive real values named alphabet and the

ratio q, named base, being either a real or a complex number. To ensure the convergence of (1),

the base q is assumed to be greater than 1 in modulus. When a number x satisfies x = ∑
∞
i=1

xi

qi ,

for a sequence (xi)i≥1 with digits in the alphabet A, we say that x is representable in base q and

alphabet A and we call (xi)i≥1 = x1x2 · · · a representation of x. The representability is one of the

main themes of this dissertation and it can be treated starting from very familiar concepts. For

example when the alphabet is {0, 1} and the base is q = 2, then any value x ∈ [0, 1] satisfies:

x =
∞

∑
i=1

xi

2i

for an appropriate sequence (xi)i≥1 = x1x2 · · · corresponding to the classical binary expansion

of x. Similarly the decimal expansion of x is nothing different from a representation (xi)i≥1 with

digits in {0, 1, . . . , 9} and base 10. The fact that every value in [0, 1] admits a decimal expansion is

quite trivial, this being the usual way we represent numbers, but not general. Let us consider the

set of representable numbers Λq,A := {∑
∞
i=1

xi

qi | xi ∈ A, i ≥ 1}. If the alphabet A is equal to {0, 2}
and the base is q = 3, then

Λq,A = Λ3,{0,2} = {
∞

∑
i=1

xi

3i
| xi ∈ {0, 2}, i ≥ 1}

is well known to coincide with the middle third Cantor set. In particular Λ3,{0,2} is a totally

disconnected set strictly included in the unitary interval. By assuming that the alphabet is {0, 1, 2}
instead of {0, 2}, namely by adding the digit 1, it can be proved that the full representability of

[0, 1] is restored, i.e. Λ3,{0,1,2} = [0, 1]. To stress that the digit 1 is necessary to represent the whole

unit interval, the alphabet {0, 2} is said to be with deleted digits.

We then consider a generalized concept of representability. Fix an alphabet A and a base q,

either real or complex, and suppose that for x 6∈ Λq,A there exists a non-negative integer n such

that x/qn ∈ Λq,A. As

x

qn
=

∞

∑
i=1

xi

qi
implies x =

n−1

∑
i=0

xn−iq
i +

∞

∑
i=1

xn+i

qi
= x1qn−1 + · · ·+ xn−1q + xn +

xn+1

q
+ · · ·

we may represent x by an expression in the form x1 · · · xn . xn+1 · · · , with the symbol . indicating

the scaling factor qn. When we assume that the base is 10, then this general notation assumes a

familiar form; e.g. 1 . 2 traditionally denotes the quantity 10 × ( 1
10 + 2

102 ).

If any value belonging to a given numerical set Λ admits a “generalized” representation in

base q and alphabet A, then the couple (A, q) is said to specify a (positional) numeration system

for Λ.

3



4 INTRODUCTION

Let us see some examples. The non-negative real numbers can be represented by an integer

base b > 1 and alphabet {0, 1, . . . , b − 1} as well as by a non-integer base q > 1 and alphabet

{0, 1, . . . , ⌊q⌋}. The choice of a negative base leads to the full representability of R: any real

number can be represented in integer base −b, with b > 1, and alphabet {0, 1, . . . , b − 1} and any

real number can be represented by the non-integer negative base −q and alphabet {0, 1, . . . , ⌊q⌋}.

The case of a positive non-integer base is presented in the seminal paper by Rényi [Rén57] while

the negative non-integer case has been recently treated in [IS09]. The alphabets {0, 1, . . . , b − 1}
and {0, 1, . . . , ⌊q⌋} are called canonical. Pedicini [Ped05] studied the representability in positive

real base and non-canonical alphabets, also named alphabets with deleted digits, by showing that

({a1, . . . , aJ}, q) is numeration system for non-negative real numbers if and only if q ≤ (aJ −
a1)/ max{aj+1 − aj}. The case of complex base is more complicated and representability results

have been established only for some classes of complex base, e.g. the Gaussian integers in the

form −n ± i, with n ∈ N, the integer roots k
√

n with n ∈ Z and k ∈ N, the quadratic complex

numbers.

In the case of a positive non-integer base, the set of representable values Λq,A may have only

two topological structures: either it coincides with an interval or it is a totally disconnected set.

Clearly the couple (A, q) provides a full representability of R+ if and only if the first case occurs.

Putting together these facts we may deduce that every non-negative real number can be repre-

sented in base q and alphabet A if and only if Λq,A is a convex set. The study of Λq,A has also

been simplified by the fact that the smallest and the greatest representable number are explicitely

known:

min Λq,A =
min A

q − 1
=

∞

∑
i=1

min A

qi
and max Λq,A =

max A

q − 1
=

∞

∑
i=1

max A

qi
.

When we consider a complex base, some aspects change. The convexity of Λq,A is not a necessary

condition for the representability, e.g. every complex number can be represented in base −1 + i

and alphabet {0, 1} but Λq,A coincides with the space-filling twin dragon curve, a non-convex set.

Moreover the boundary of Λq,A may have a fractal nature in complex base even in the case of full

representability.

Our approach to the problem of representability in complex base consists in the study of the

convex hull of Λq,A when q has a rational argument. In Chapter 2 we characterize the convex hull

of Λq,A and, by mean of such a characterization, we establish a necessary and sufficient condition

for Λq,A to be convex. As the convexity of Λq,A is a sufficient condition for the full representability,

such a result provides an inedited class of number systems with complex base.

So far we spoke about the conditions of representability: in other words we focused on the

problems related to establish whether any real or complex number can be represented using a

given base and a given alphabet. But when the representability is assumed, e.g. by choosing

a non-integer base ±q and its canonical alphabet Aq = {0, 1, . . . , ⌊q⌋}, many other questions

arise. For example one may ask how to represent the numbers, what are the combinatorial and

dynamical properties of such representations, how many different representations does a real

number have. In what follows we briefly recall some classical results on these topics to the end of

contextualize our original results.

The proof that any non-negative real number admits a representation in base q and alpha-

bet Aq is classically constructive and based upon the so-called greedy algorithm. The sequences

obtained by the greedy algorithm are called greedy expansions or q-expansions and they revealed



INTRODUCTION 5

interesting properties. For example the q-expansion of x ∈ [0, 1] is the lexicographically great-

est among all the possible representations of x: this implies that if we truncate the q-expansion

of a given number x, the error we do is minimal. Another interesting feature is the monotonic-

ity with respect to the numerical value: if two q-expansions are one lexicographically less than

the other then the corresponding values are one smaller than the other. These properties of

q-expansions stimulated the research on this topic involving several fields of mathematics and

theoretical computer science, like number theory, ergodic theory, symbolic dynamics, automata

theory. In particular the Parry’s characterization of q-expansions [Par60] allowed to study from

a symbolic dynamical point of view the closure of the set of q-expansions, named q-shift. Fea-

tures like the recognizability by a finite automaton and the entropy of the q-shift as well as the

existence of finite automata performing arithmetic operations in some positive bases have been

widely investigated. In Chapter 3 we extend some of these results to the case of a negative based

numeration system.

Another widely studied aspect of the representations in positive non-integer bases is the ex-

istence of different expansions representing the same value. When a representable value admits

only one representation, its expansion is said to be unique. In the nineties Erdős, together with

Horváth, Joó and Komornik, devoted a series of papers to the number of possible different rep-

resentations in base 1 < q < 2 and alphabet {0, 1} with particular attention to the expansions

of 1. These results, together with those of the paper by Daróczy and Kátai [DK93], allowed to

clarify the structure of the set of unique expansions in base 1 < q < 2 and alphabet {0, 1}. In

particular when the base is less than the Golden Mean then every positive number can be repre-

sented in at least two different ways, when the base is complied between the Golden Mean and

the Komornik-Loreti constant there exists a countable set of values that can be represented by a

unique expansion, and when the base is larger than the Komornik-Loreti constant the set of values

with a unique expansion has the cardinality of the continuum. In Chapters 4 and 5 we assume

the base to be a non-integer positive value and we prove the existence of a sort of “generalized

Golden Mean” for arbitrary alphabets, namely we show that expansions are never unique if and

only if the base is chosen below a critical value. In the case of a ternary alphabet we explicitely

characterize such a critical base as well as the unique expansions for sufficiently small bases.

Organization of the chapters. This dissertation is organized as follows. Chapter 1 contains

some preliminaries and the state of the art of the expansions in non-integer base. Chapter 2 deals

with the representability in complex base. Chapter 3 is devoted to the study of expansions in non-

integer negative bases by establishing many analogies with the classical positive case. In Chapters

4 and 5 the base is assumed to be non-integer and positive: Chapter 4 is devoted to the character-

ization of the “generalized Golden Mean”, also called critical base, for ternary alphabets. Finally

in Chapter 5 we explicitely characterize the unique expansions with digits in ternary alphabets

for a set of sufficiently small bases.

The research work leading to Chapter 2 has been realized under the supervision of Paola

Loreti. Most of the results of Chapter 3 are in collaboration with Christiane Frougny and they

can be found in [FL09]. Chapter 4 substantially contains a work in collaboration with Vilmos

Komornik and Marco Pedicini [KLP].



CHAPTER 1

Background results on expansions in non-integer base

This chapter is devoted to two categories of preliminary results. First we introduce some

basic notions and results not exclusively related to the numeration systems, with the purpose of

recalling most of the theoretical tools used along this dissertation. We then focus on the state of

the art of the classical expansions on non-integer base, with particular attention to those aspects

that shall be generalized in the further chapters.

Organization of the chapter. In Section 1 some basic definitions and results about combi-

natorics on words, automata theory, symbolic dynamics, algebraic integers, sturmian words and

iterated function systems are introduced. Section 2 contains a formal definition of positional num-

ber systems. In Section 3 we show some simple constructions concerning the number systems

with integer base, these construction being generalized in Section 4. Section 4 also contains sev-

eral results about the classical q-expansions, the symbolic dynamical systems associated to these

representations, the case of a particular class of bases named Pisot numbers and the redundancy

of representations in non-integer base.

1. Our toolbox

1.1. Combinatorics on words.

Alphabets and related operations. An alphabet is a totally ordered set. In this dissertation

the alphabets are always finite subsets of R+ and the total order on the elements is <, i.e. the

natural ordering on R. The translation of the alphabet A of a factor t ∈ R is the alphabet A + t :=

{a + t|a ∈ A}; the scaling of the alphabet A of a factor t ∈ R is the alphabet tA := {ta|a ∈ A}. The

dual of the alphabet A is the alphabet D(A) := {min(A) + max(A)− a|a ∈ A}.

Digits and gaps. An element of an alphabet is called digit. The difference between two con-

secutive digits is called gap. If A = {a1, . . . , aJ}, the right gap related to the digit aj, with j < J,

is the (positive) quantity aj+1 − aj; the left gap related to the digit aj, with j > 0, is the (positive)

quantity aj − aj−1.

Finite and infinite words. The concatenation of a finite number of digits is called (finite)

word. The set of the finite words with digits in A is denoted by A∗; the set of the finite words

with digits in A and with length equal to n is denoted by An. An infinite word, or simply sequence,

is a sequence x indexed by N with values in A, that is x = x1x2 · · · where each xi ∈ A. When

denoting infinite sequences, we sometimes use the notation (xi)i≥1 as well. The set of infinite

words with digits in A is denoted by AN, namely AN := {x | x = x1x2 · · · ; xi ∈ A; i ≥ 1}. The

set of finite or infinite words is A∞ := A∗ ∪ AN. The length of a finite or infinite word v is denoted

by |v|. Let v be a word of A∗, denote by vn the concatenation of v to itself n times, and by vω the

infinite concatenation vvv · · · . A word of the form uvω is said to be eventually periodic with period

|v|. A (purely) periodic word is an eventually periodic word of the form vω. If v = min A then

the eventually periodic uvω is called eventually minimal, similarly if v = max A then uvω is called

eventually maximal.

6



1. OUR TOOLBOX 7

Factors. A finite word v is a factor w of a (finite or infinite) word z ∈ A∞ if there exist u and w

such that z = uvw. When u is the empty word, v is a prefix of x. When w is empty, v is said to be a

suffix of x. A factor of a word z ∈ A∞ is said to be left special (resp. right special) if aw and bw (resp.

wa and wb) are factors of z for some digits a, b ∈ A, a 6= b. For every word z ∈ A∞, F(z) denotes

the set of factors of z; Fn(z) := F(z) ∩ An, with n ∈ N, is the set of factors of z length equal to

n. The relation between the left special factors of an infinite sequence and the structure of such a

sequence is explicited in the following result, proved in [BD09].

PROPOSITION 1.1. A sequence x is purely periodic if and only if it has no left special factors of some

length n.

Operations on words. Two words u and v are said to be right congruent modulo H ⊆ A∗ if, for

every w, uw is in H if and only if vw is in H. The index of the congruence modulo H is the number

of the classes of congruence modulo H.

Denote by ε the empty word and define A+ := A∗ \ {ε}. The words in A+ can be ordered by

the lexicographic order <lex: if v, w ∈ A+, v <lex w if and only if either v is a prefix of w or there

exists x ∈ A∗ such that v = xav′ and w = xbw′ with a, b ∈ A and a < b. The lexicographic order is

extended to AN as follows. Let x = x1x2 · · · , y = y1y2 · · · ∈ Aω , let x 6= y and let i be the smallest

index such that xi 6= yi. Then x <lex y if and only if xi < yi. If w, z ∈ A∞ \ {ε} satisfy w <lex z,

then w (resp. z) is said to be (lexicographically) smaller than z (resp. larger than w). When it can be

evinced by the context, the subscript lex is omitted.

The shift is the map σ : Aω → Aω which satisfies σ(x) = x2x3 · · · for every x = x1x2 ∈ Aω. A

set U ⊆ Aω which is closed under shift is called shift-invariant. For every x ∈ Aω, the orbit (with

respect to the shift) of x is the set Orb(x) := {σn(x)|n = 0, 1, . . . }.

Let z ∈ A∞ and let k be a positive integer. We denote min(z|k) := min Fk(z) (resp. max(z|k) :=

max Fk(z)) the smallest (resp. greatest) factor of z of length k. When z is infinite, we may also

define:

min z := lim
k→∞

min(z|k) max z := lim
k→∞

max(z|k)
Remark that min(z|k) and max(z|k) are respectively a prefixes of min(z|k + 1) and max(z|k + 1)

for every k. This “monotonicity” with respect to the prefixes implies that min z and max z are well

defined.

1.2. Automata theory. We recall some definitions on automata, see [Eil74] and [Sak03] for

instance. An automaton over A, A = (Q, A, E, I, T), is a directed graph labelled by elements of A.

The set of vertices, traditionally called states, is denoted by Q, I ⊂ Q is the set of initial states,

T ⊂ Q is the set of terminal states and E ⊂ Q × A × Q is the set of labelled edges. If (s, a, s′) ∈ E,

we write s
a→ s′. The automaton is finite if Q is finite. The automaton A is deterministic if E is the

graph of a (partial) function from Q × A into Q, and if there is a unique initial state. A subset H

of A∗ is said to be recognizable by a finite automaton, or regular, if there exists a finite automaton A
such that H is equal to the set of labels of paths starting in an initial state and ending in a terminal

state. Finite automata can be partially described by their adjacency matrix, whose definition is

given below.

DEFINITION 1.1 (Adjacency matrix). Let A be a finite automaton and denote by Q = {s1, . . . , sn}
the (finite) set of states. The adjacency matrix of A is the square matrix (ai,j)i,j≤n where for every i, j ≤ n

the element ai,j is the number of the edges from the state si to the state sj.

A recognizable by a finite automaton set H is characterized by index of the congruence mod-

ulo H, as stated in the following result.
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THEOREM 1.1. H is recognizable by a finite automaton if and only if the congruence modulo H has

finite index.

Let A and A′ be two alphabets. A transducer is an automaton T = (Q, A∗× A′∗, E, I, T) where

the edges of E are labelled by couples in A∗ × A′∗. It is said to be finite if the set Q of states and the

set E of edges are finite. If (s, (u, v), s′) ∈ E, we write s
u|v−→ s′. The input automaton (resp. output

automaton) of such a transducer is obtained by taking the projection of edges on the first (resp.

second) component. A transducer is said to be sequential if its input automaton is deterministic.

The same notions can be defined for automata and transducer processing words from right to

left : they are called right automata or transducers.

1.3. Symbolic dynamics. Fix an alphabet A. A bi-infinite sequence over the alphabet A is a

sequence indexed in Z with digits in A.

The shift σ is defined in AZ by:

(2) σ((xi)i∈Z) = (xi+1)i∈Z.

A set S ⊆ AZ (or S ⊆ Aω) is a symbolic dynamical system, or subshift, if it is shift-invariant and

closed for the product topology on AZ . The trivial subshift S = AZ is called full shift.

A bi-infinite word z avoids a set of word X ⊂ A∗ if no factor of z is in X. The set of all

words which avoid X is denoted SX . A classical result establishes the following relation between

subshifts and avoided sets.

PROPOSITION 1.2. A set S ⊆ AZ is a subshift if and only if S is of the form SX for some X ⊂ A∗.

Let F(S) be the set of factors of elements of S, let I(S) = A+ \ F(S) be the set of words

avoided by S, and let X(S) be the set of elements of I(S) which have no proper factor in I(S). The

subshift S is sofic if and only if F(S) is recognizable by a finite automaton, or equivalently if X(S)

is recognizable by a finite automaton. The subshift S is of finite type if S = SX for some finite set

X, or equivalently if X(S) is finite.

The topological entropy of a subshift S is

(3) h(S) = lim
n→∞

1

n
log(Fn(S))

where Fn(S) is the number of elements of F(S) of length n.

THEOREM 1.2. When S is sofic, the entropy of S is equal to the logarithm of the spectral radius of the

adjacency matrix of the finite automaton recognizing F(S).

REMARK 1.1. A comprehensive introduction on symbolic dinamical systems can be found in [Lot02,

Chapter 1] and [LM95].

1.4. Algebraic integers. We recall that an algebraic integer is a root of a polynomial with inte-

gral coefficients and leading coefficient equal to 1. The minimum polynomial Mq(X) of an algebraic

integer q is the monic polynomial in Z[X] with minimal degree satisfying Mq(q) = 0. The alge-

braic conjugates, or simply conjugates, of an algebraic integer q are all the (possibly complex) other

roots of Mq(X).

A Pisot number is an algebraic integer greater than 1 whose conjugates are less than 1 in mod-

ulus.

EXAMPLE 1.1. The positive integers (except 1) and the Golden Mean G are celebrated examples of

Pisot numbers.
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EXAMPLE 1.2. The square of the Golden Mean, G2, is a Pisot number. In fact G2 =
(
(1 +

√
5)/2

)2
=

(3 +
√

5)/2 and its conjugate is equal to (3 −
√

5)/2 < 1.

The set Q(q), with q ∈ C is called algebraic extension of Q to q and it is the smallest field

containing both Q and q. For example, if q ∈ Q then Q(q) = Q. The elements Q(q) are all in the

form P(q)/Q(q) where P(X), Q(X) ∈ Z[X], Q(q) 6= 0. The following classical result describes

the structure of Q(q).

THEOREM 1.3. For every q ∈ C, Q(q) is a vector space over Q with base {1, q, q2, . . . , qd−1} if q is an

algebraic integer whose minimal polynomial has degree d and with (infinite) base {1, q, q2, . . . } otherwise.

We now show some direct consequences of the definitions and of the result above.

LEMMA 1.1. Let q be an algebraic integer and let Mq(X) = Xd − a1Xd−1 − · · · − ad be the minimal

polynomial of q. Then:

(a) the minimal polynomial of −q is M−q(X) = Xd − (−1)d−1a1Xd−1 − (−1)d−2a2Xd−2 − · · · − ad;

(b) every x ∈ Q(q) can be expressed as x = b−1 ∑
d−1
i=0 ci(−q)i with b and ci in Z;

(c) if q is a zero of P(X) ∈ Z[X], then all the algebraic conjugates of q, qi with i = 2, . . . , d, also satisfy

P(qi) = 0.

PROOF. The assertions (a) and (b) follow immediately by the definition of minimal polyno-

mial and by Theorem 1.3. Then we need to prove (c). If q is a zero of P(X) ∈ Z[X] then the

degree of P(X) must be greater than d to not contradict the minimality of Mq(X). As Z[X] is an

Euclidean domain, we may perform the division by Mq(X) and get: P(X) = Q(X)Mq(X) + R(X)

and with the degree of R(X) lower than d. Then P(q) = 0 implies R(q) = 0 and again by the

minimality of Mq(X) we have R(X) = 0. Hence Mq(X) divides P(X) and thesis follows. �

1.5. Sturmian sequences. Let A = {a, b} be a binary alphabet.

DEFINITION 1.2 (Sturmian sequences). A sequence s ∈ Aω is sturmian if there exist α, ρ ∈ [0, 1]

such that for every n:

(4) sn = a if ⌊ρ + (n + 1)α⌋ = ⌊ρ + nα⌋ sn = b otherwise

or for every n:

(5) sn = a if ⌈ρ + (n + 1)α⌉ = ⌈ρ + nα⌉ sn = b otherwise.

The sequence s is called proper sturmian (or aperiodic sturmian) if α is irrational, periodic stur-

mian if α is rational, standard sturmian if ρ = 0.

REMARK 1.2. Classically, sturmian sequences can be defined as sequences whose factors of length n

are exactly n + 1, namely sequences with minimal positive complexity, this property being equivalent

to the conditions in (4) and (5) with α irrational.

Here, following [Pir05], we admit both rational and irrational α’s, since in Chapter 5 this larger class

is proved to have interesting uniqueness properties in some numeration systems.

Hereafter we state the lexicographical characterization of standard sturmian sequences.

THEOREM 1.4. A sequence s ∈ Aω is standard sturmian if and only if

(6) as ≤ min s ≤ max s ≤ bs.

In particular:

(a) if as = min s and max s = bs then s is standard proper;
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(b) if as = min s and max s < bs then s is standard periodic in the form s = (wba)ω;

(c) if as < min s and max s = bs then s is standard periodic in the form s = (wab)ω;

for some w ∈ A∗.

In particular, if s is a periodic sturmian word, then max s = (bwa)ω and min s = (awb)ω for some

w ∈ {a, b}∗.

REMARK 1.3. The aperiodic case of Theorem 1.4 has been rediscovered by several authors, but the first

version seems to be due to Veerman in the eighties ([Vee86], [Vee87]). We refer to [AG09] for a detailed

history of this result. The periodic case has been proved by Pirillo, see [Pir03] and [Pir05].

1.6. Iterated function systems. The theory of iterated function systems (IFS) is a wide field

and we refer to [Fal90] for a comprehensive overview. Our interest in this argument is due to the

fact that IFS’s can be used to model the representations in positional number systems. We employ

this relation in Chapter 2, where only the following basic notions are necessary.

DEFINITION 1.3 (Iterated function systems and attractors). An iterated function system F :=

{ f0, . . . , fm} is a finite set of contractive maps defined on a complete metric space. An attractor of F is a

set satisfying S = ∪m
i=0 fi(S).

THEOREM 1.5 (Uniqueness of the attractor). For every iterated function system F = { f0, . . . , fm}
there exists only one set S satisfying S = ∪m

i=0 fi(S).

REMARK 1.4. The uniqueness of the attractor is a consequence of the Banach’s Fixed Point Theorem.

2. Positional number systems

A numeration system is a mathematical notation ensuring a representation for every element

of a given numerical set. For example binary and decimal numeration systems provide a rep-

resentation for every non-negative real number, but not for a general complex number. In fact

complex numbers are usually represented by combining the representations of real numbers into

expressions in the form a + ib with a, b ∈ R and i =
√
−1; ρ cos θ + ρi sin θ or in the exponential

form ρeiθ with ρ > 0 and θ ∈ [0, 2π).

An important class of numeration systems complies the positional number systems. A positional

number system is defined starting from a base q, an integer or a real or a complex number with

modulus larger than 1, and a finite alphabet A. A number x is representable in base q and alphabet

A if there exists a sequence of digits in A, say x−d · · · x−1x0x1x2 · · · satisfying

x = x−dqd + · · ·+ x−1q + x0 +
x1

q
+

x2

q2
+ · · ·

=
d

∑
i=0

x−iq
i +

∞

∑
i=1

xi

qi
.

(7)

The sum ∑
d
i=0 x−iq

i, namely the part with positive powers of the base, is called the integer part

of x and the sum ∑
∞
i=1

xi

qi is called the fractional part. A representation with a positional number

system is usually denoted (x−d · · · x−1x0.x1x2 · · · )q with the symbol . dividing the integer and

the fractional part. If the integer part is equal to 0 we then write (.x1x2 · · · )q. The equalities in (7)

imply that

(8) x = (x−d · · · x−1x0.x1x2 · · · )q ⇔
x

q
= (x−d · · · x−1.x0x1x2 · · · )q
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In other words, the division by the base q of the represented value is equivalent to a left-shift on

the digits of its representation. If we keep shifting in (8) we then get:

(9) x = (x−d · · · x−1x0.x1x2 · · · )q ⇔
x

qd+1
= (.x−n · · · x−1x0x1x2 · · · )q

and we may conclude that a number x is representable in base q and alphabet A if and only if

there exists an integer d and a sequence x−d+1xn−2 · · · ∈ AN such that

x

qd
=

∞

∑
i=1

x−d+i

qi
.

If x is representable, then its representation can be constructed starting by the representation of

the fractional part of an appropriate rescaling of x, namely

(10) x → x

qd
=

∞

∑
i=1

x−d+i

qi

→ x

qd
= (.x−d+1 · · · x−1x0x1x2 · · · )q

→ x = (x−d+1 · · · x−1x0.x1x2 · · · )q.

It follows by the equations above that a general system and its fractional part share the properties

related to the representability and the combinatorial and dynamical properties of the representa-

tions. Hence we may restrict ourselves without loss of generality to the study of the fractional

part and, where is not specified, call representable a number satisfying the equation

x =
∞

∑
i=1

xi

qi

for some sequence x1x2 · · · ∈ AN, named the expansion of x in base q.

We finally call the numerical value in base q of a (finite or infinite) word x = (xi)
|x|
i=1 the map

πq(x) := ∑
|x|
i=1

xi
qi

.

3. Positional numeration systems with positive integer base

The positional number systems with integer base b > 1 and canonical alphabet {0, 1, . . . , b − 1}
are probably the most familiar, because they include the decimal and binary numeration systems.

Any real number in [0, 1) can be represented by b-ary expansion in the form

x =
∞

∑
i=1

xi

bi

by using the following algorithm. We consider x and we choose as first digit the greatest integer

x1 such that:
x1

b
≤ x.

As x ∈ [0, 1) then b(x − x1
b ) ∈ [0, 1) as well, we may reapply the algorithm. Hence we choose the

greatest integer x2 such that
x2

b
≤ b(x − x1

b
).

Note that the inequality above implies:

x1

b
+

x2

b2
≤ x.

By iterating, at step n we get:
x1

b
+

x2

b2
+ · · ·+ xn

bn
≤ x.
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Starting from the relation q(x − x1
b ) ∈ [0, 1) it can be recursively proved that the remainder of

order n, namely the difference between the value x and the expansion truncated at the n-th digit,

satisfies:

0 ≤ x − (
x1

b
+

x2

b2
+ · · ·+ xn

bn
) ≤ 1

bn
.

Hence as n tends to infinity the difference above vanishes and, consequently, the sequence x1x2 · · ·
is an expansion of x in base b.

REMARK 1.5. We remark that at any step n the maximal digit xn satisfying ∑
n
i=1 xi/bi ≤ x is chosen.

This implies that by incrementing any digit, i.e. considering any sequence lexicographically greater, we

get a sum larger than the represented value. Hence the algorithm above is greedy, namely it yields the

lexicographical greatest expansion of a value x.

The greedy algorithm is equivalent to the iteration of the map Tb := bx − ⌊bx⌋. In fact we have

x1 = ⌊bx⌋ = ⌊bT0
b (x)⌋, x2 = ⌊b2(x − x1

b )⌋ = ⌊bTb(x)⌋ and , in general, xn = ⌊bTn−1
b (x)⌋. Finally

note that the definition implies that the digits belong to {0, 1, . . . , b− 1} thus the greedy algorithm actually

yields an expansion with base b and canonical alphabet.

We have just showed that every real number in [0, 1) can be represented by an expansion

resulting by the greedy algorithm. In following classical proposition we state that the converse is

not true.

PROPOSITION 1.3. A value x ∈ [0, 1) admits at most two distinct expansions in base b and alphabet

{0, 1, . . . , b − 1}.

In particular the representation of x is not unique if and only if x = (.x1 · · · xn)b for some (finite)

digits x1, . . . , xn belonging to the canonical alphabet. The two expansions of x are the coefficients in the

formula:

x =
n

∑
i=1

xi

bi
=

x1

b
+ · · ·+ xn−1

bn−1
+

xn − 1

bn
+

b − 1

bn+1
+

b − 1

bn+2
+ · · · .

REMARK 1.6. We remark that ∑
∞
i=1

b−1
bi = 1, hence when the suffix (b − 1)ω occurs in expansion we

can increase the last digit different from b− 1 and substitute the tail with (0)∞. This simple procedure yields

a lexicographically greater expansion. Hence if a sequence with digits in {0, 1, . . . , b − 1} is eventually

maximal, it cannot be gained with the greedy algorithm.

4. Expansions in non-integer bases

4.1. Basic definitions. In [Rén57], Rényi introduced a positional numeration system with

non-integer base q > 1 and canonical alphabet Aq := {0, 1, . . . , ⌊q⌋}, with ⌊·⌋ representing the

lower integer part. In Rényi’s numeration systems all the real numbers belonging to [0, 1) are

represented by the so called q-expansions, defined below.

DEFINITION 1.4 (q-transformation, q-expansions). For every q > 1 the q-transformation is the

map from [0, 1) onto itself Tq(x) = qx − ⌊qx⌋. The q-expansion of x ∈ [0, 1) is a sequence γq(x) :=

x1x2 · · · ∈ AN
q gained by the iteration of the q-transformation:

(11) xn = ⌊qTn−1
q (x)⌋.

for every n ≥ 1.

REMARK 1.7. We may convince ourselves that the q-expansion γq(x) = x1x2 · · · is a representation

of x by applying the definition. In fact

x1 = ⌊qx⌋ ⇒ x =
x1

q
+

Tq(x)

q
;
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and, by iterating, for every n ≥ 1:

(12) x =
n

∑
i=1

xn

qn
+

Tn
q (x)

qn
.

As n → ∞, we get x = ∑
n
i=1

xn
qn .

We now state two classical properties of q-expansions.

PROPOSITION 1.4. Let x ∈ [0, 1) and consider γq(x), the q-expansion of x.

(a) If there exists a sequence x′1x′2 · · · satisfying x = ∑
∞
i=1

x′i
qi , then

x′1x′2 · · · ≤lex γq(x).

(b) For every y ∈ [0, 1):

x < y if and only if γq(x) <lex γq(y)

We remark that the first part of the previous proposition states that the q-expansion is the

lexicographically greatest among all the possible representations in base q of a number. For this

reason q-expansions are also called greedy expansions. We shall use indifferently one or the other

name, by privileging the name q-expansions when we wish to stress the dynamical properties and

the represented value and the name greedy when we focus on lexicographical and combinatorial

aspects.

4.2. Greedy and quasi-greedy algorithms and Parry’s characterization of q-expansions. In

this section we characterize the sequences representing a greedy expansion. In fact a sequence

with digits in {0, 1, . . . , ⌊q⌋} is not necessarily a greedy expansion.

In some case is quite easy to recognize the greedy expansions: for example in the case of

q = G where G = 1+
√

5
2 is the Golden Mean, the study of the q-transformation yields that after

any occurrence of the digit 1 must follow the digit 0 and thus a sequence of zeros and ones is a

greedy expansion if and only if there are no occurrences of the “forbidden” subsequence 11.

Parry characterized the greedy expansions by mean of the lexicographical comparison with

a boundary sequence, the quasi-greedy expansion of 1 [Par60] . We now introduce the preliminary

definitions and then we state such a result.

4.2.1. Greedy and quasi-greedy algorithms. Greedy expansions can be equivalently defined

by the so called greedy algorithm. We fix a real number x ∈ [0, 1] and we proceed in computing the

digits as follows. For every n ≥ 1 we define xn as the greatest digit in Aq satisfying the inequality:

(13)
n−1

∑
i=1

xi

qi
+

xn

qn
≤ x.

By construction the resulting sequence is the lexicographically greatest sequence representing x

and hence it is the greedy expansion of x. If there exists n such that an equality holds in (13), then

the greedy expansion of x is in the form x1 · · · xn(0)ω: it is eventually minimal because 0 is the

smallest digit in Aq.

REMARK 1.8. 1. In the literature, eventually minimal expansions in base q are called finite, because

it suffices to expand a finite number of non-zero digits to represent the value. We adopt the more precise

notation of eventually minimal to avoid confusion with finite words and to deal the cases of general

alphabets, where the minimal digit is not necessarily 0;

2. the greedy algorithm is well defined for every x ∈ [0,
⌊q⌋
q−1 ] and, in particular, for x = 1. Hence we may

extend the definition of greedy expansions to the value 1, so that γq may be considered defined over the

set [0, 1].
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Starting from an eventually minimal greedy expansion, it is possible to construct a different

expansion of the same value. In fact γq(x) = x1 · · · xn(0)ω implies that

x =
n

∑
i=1

xi

qi
=

n−1

∑
i=1

xi

qi
+

xn − 1

qn
+

1

qn
;

hence x1 · · · xn−1(xn − 1)γq(1) is a different expansion of x. By iterating this reasoning if neces-

sary, i.e. when γq(1) is eventually minimal, we get a non-eventually minimal representation of

x. By construction such a sequence is the lexicographically greatest non-eventually minimal rep-

resentation of x and it is called quasi-greedy expansion of x. Quasi greedy expansions may also be

constructed by mean of the quasi-greedy algorithm defined below.

DEFINITION 1.5 (quasi-greedy expansions). Fix a real number x ∈ [0, 1]. The quasi-greedy

expansion of x is the sequence γ̃q(x) = x̃1 x̃2 · · · whose digits are the greatest in Aq satisfying the strict

inequality:

(14)
n−1

∑
i=1

x̃i

qi
+

x̃n

qn
< x.

for every n ≥ 1.

4.2.2. Parry’s characterization of greedy expansions. We remark that the quasi-greedy ex-

pansion of 1 can be explicitely defined starting by the greedy expansion of 1:

(15) γ̃q(1) =





γq(1) if γq(1) is not eventually minimal

(γ1 . . . γn−1(γn − 1))ω if γq(1) = γ1 . . . γn(0)ω

THEOREM 1.6 (W. Parry [Par60]). Let q > 1, x ∈ [0, 1] and suppose x1x2 · · · ∈ AN
q be a sequence

satisfying x = ∑
∞
i=1

xi

qi . Then x1x2 · · · is the greedy expansion of x if and only if for every n ≥ 1:

(16) xn+1xn+2 · · · <lex γ̃q(1).

COROLLARY 1.1. The set of greedy expansions is shift-invariant.

4.3. The q-shift. Since in Corollary 1.1 we stated that the set of q-expansions is shift invariant,

the closure of the set of the greedy expansions is a subshift: it is denoted by Sq and it is called q-shift.

We may characterize the set Sq by rewriting Theorem 1.6 as follows.

THEOREM 1.7. Let q > 1 be a real number. A sequence x ∈ AZ belongs to Sq if and only if for all

n ∈ Z

(17) xn+1xn+2 · · · ≤lex γ̃q(1).

EXAMPLE 1.3. By taking as base the Golden Mean G := 1+
√

5
2 , we have AG = {0, 1}, γG(1) = 11

and, by (15), γ̃G(1) = (10)∞. Then any sequence (xi)i∈Z satisfying (17) is such that:

(18) for all n ∈ Z, xn+1xn+2 · · · ≤lex (10)∞.

which is equivalent to

(19) for all n ∈ Z, if xn+1 = 1 then xn+2 6= 1.

This, together with Theorem 1.7, implies that any sequence in SG does not countain any occurrence of the

word 11. Namely, SG avoids the finite set {11} and, consequently, SG is a set of finite type.

In previous example two features of the Golden mean are enlightened:

- the greedy expansion of 1 is eventually minimal in base G;
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- the subshift SG is of finite type.

These two properties are actually equivalent in every non-integer base [IT74]. An analogous prop-

erty has been proved in [Ber86] for the more general sofic q-shift. Hereafter we state such results.

THEOREM 1.8 (A. Bertrand [Ber86], S. Ito and Y. Takahashi [IT74]). Let q > 1.

(a) The q-shift is sofic if and only if γq(1) is eventually periodic.

(b) The q-shift is of finite type if and only if γq(1) is eventually minimal.

We conclude with the following result on the entropy of the q-shift.

THEOREM 1.9 (S. Ito and Y. Takahashi [IT74]). The entropy of the q-shift is equal to log q.

4.4. Pisot bases. The numeration in Pisot base knew an increasing interest in view of the

remarkable analogy with the case of expansions in integer base established in the following result.

THEOREM 1.10 (A. Bertrand [Ber77],K. Schmidt [Sch80]). Let q be a Pisot number. Then a positive

real number x has an eventually periodic greedy expansion in base q if and only if x ∈ Q(q).

Schmidt also proved a partial converse of Theorem 1.10. Recall that a Salem number is an

algebraic integer whose conjugates are not greater than 1 in modulus and with one equal to 1 in

modulus.

THEOREM 1.11 (K. Schmidt [Sch80]). Let q be a fixed real number. If any x ∈ Q ∩ [0, 1) has an

eventually periodic expansion in base q then q must be Pisot or Salem.

Another feature of the numeration in base Pisot is the realizability of some operations by mean

of a finite automaton — e.g. addition, multiplication by a constant integer and digit set conversion

are computable by a sequential finite automaton [Fro99, Fro03]; minimal weight expansions in

Pisot base are recognizable by a finite automaton [FS08].

4.5. Redundant and unique representations. One of the main feature of non-integer base

numeration systems is the redundancy of the representation, i.e. the existence of several expansions

for the same value. The b-ary expansions have a very low redundancy: there exist exactly two

different expansions only for numbers admitting a finite (eventually minimal in our notation)

expansion. We generalized this property to the non-integer case in 4.2.1, but there is much more.

In fact, starting from the papers [EJK90], [EJ92] and [EJK94] the cardinality of the expansions in

non-integer bases has been intensively studied. Before recalling some classical results, we say

that the expansion of a value x is unique in base q if there are no other sequences (xi)i≥1 satisfying

x = ∑
∞
i=1 xi/qi. Moreover we fix the alphabet A = {0, 1} and we remark that if q < 2 then

A = Aq.

(a) For every base 1 < q < G, where G is the Golden Mean, every x ∈ (0, 1
q−1 ) has a continuum

of different expansions [EJK90].

(b) If q = G then 1 has countable different expansions [EHJ91] and there not exist unique expan-

sions.

(c) If G < q < qc, where qc is the Komornik-Loreti constant, then a countable many values in

[0, 1
q−1 ] have an unique expansion [GS01].

(d) If q = qc then the (greedy) expansion of 1 is unique [KL98].

(e) If qc ≤ q then a continuum of values in [0, 1
q−1 ) has an unique expansion [GS01].

(f) For every 1 < q < 2 the set of values with at most countable different expansions has however

zero Lebesgue measure, namely almost every number in [0, 1
q−1 ] has a continuum of different

expansions [Sid03].
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REMARK 1.9. The Golden Mean and the Komornik-Loreti constant are two critical bases respectively

separating the non-existence of unique expansions, the existence of countable many unique expansions

and the existence of a continuum of unique expansions. They also have particular properties related to

the expansion of 1: in fact the Golden Mean is the smallest base expanding 1 in countable ways, and the

Komornik-Loreti constant is the smallest base ensuring the uniqueness of the expansion of 1, namely it is

the smallest univoque base.

We recall we defined for every digit x ∈ A the dual x = max A − x and we also considered the

dual of a sequence x = x1x2 · · · ∈ AN: x = x1 x2 · · · . The dependence between the uniqueness of

an expansion and γ̃q(1) is explicited by the following characterizing theorem.

THEOREM 1.12 (Z. Daróczy and I. Kátai [DK93]). Fix q > 1. An expansion (xi) ∈ AN
q is unique

in base q if and only if for every n:

xn+1xn+2 · · · < γ̃q(1) if xn is less than the first digit of γ̃q(1);(20)

xn+1xn+2 · · · < γ̃q(1) if xn > 0.(21)

Theorem 1.12 can be reformulated in terms of lazy and quasi-lazy expansions.

DEFINITION 1.6 (Lazy and quasi-lazy expansions). The lazy expansion λq(x) of x ∈ [0,
⌊q⌋
q−1 ] is

the lexicographically smallest expansion of x.

The quasi-lazy expansion λ̃q(x) of x is the lexicographically smallest not eventually maximal

expansion of x.

REMARK 1.10. Lazy expansions can be obtained in several ways: e.g. by the iteration of the Lq

map. Lq is named lazy map and it is defined from the interval ( ⌊q⌋
q−1 − 1,

⌊q⌋
q−1 ] onto itself: Lq(x) =

qx − ⌊ ⌊q⌋
q−1 − qx⌋. The procedure is similar to the case of Tq, the q-transform.

There also exists a lazy algorithm for any value x ∈ [0,
⌊q⌋
q−1 ]. Such an algorithm consists in choosing

for every n ≥ 1 the smallest digit xn ∈ Aq satisfying:

(22)
n−1

∑
i=1

xi

qi
+

xn

qn
+

⌊q⌋
qn(q − 1)

≥ x.

By replacing ≥ with a strict inequality in the equation above, we get the quasi-lazy algorithm and the

resulting sequence is the quasi-lazy expansion of x.

Finally lazy and quasi-lazy expansions can be derived by the greedy and quasi-greedy expansions as

follows. Set x ∈ [0,
⌊q⌋
q−1 ]. Then

(23) λq(x) = γq(
⌊q⌋

q − 1
− x);

and

(24) λ̃q(x) = γ̃q(
⌊q⌋

q − 1
− x).

In view of (24) we may reformulate Theorem 1.12 as follows.

COROLLARY 1.2. Fix q > 1. An expansion (ci) ∈ AN
q is unique in base q if and only if for every n:

cn+1cn+2 · · · < γ̃q(1) if cn is less than the first digit of γq(1);(25)

cn+1cn+2 · · · > λ̃q(1) if cn > 0.(26)



CHAPTER 2

Expansions in complex base

In this chapter we deal with expansions with digits in arbitrary alphabets and bases in the

form pe
2πi
n with p > 1 and n ∈ N. We study the convex hull of the set of representable numbers

by giving first a geometrical description then an explicit characterization of its extremal points.

We also show a characterizing condition for the convexity of the set of representable numbers.

1. Introduction

The first number systems in complex base seem to be those in base 2i with alphabet {0, 1, 2, 3}
and the one in base −1 + i and alphabet {0, 1}, respectively introduced by Knuth in [Knu60] and

by Penney in [Pen65]. After that many papers were devoted to representability with bases belong-

ing to larger and larger classes of complex numbers, e.g. see [KS75] for the Gaussian integers in

the form −n± i with n ∈ N, [KK81] for the quadratic fields and [DK88] for the general case. Loreti

and Komornik pursued the work in [DK88] by introducing a greedy algorithm for the expansions

in complex base with non rational argument [KL07]. In the eighties a parallel line of research was

developed by Gilbert. In [Gil81] he described the fractal nature of the set of the representable

numbers, e.g. the set of representable in base −1 + i with digits {0, 1} coincides with the fascinat-

ing space-filling twin dragon curves [Knu71]. Hausdorff dimension of some set of representable

numbers was calculated in [Gil84] and a weaker notion of self-similarity was introduced for the

study of the boundary of the representable sets [Gil87]. Complex base numeration systems and

in particular the geometry of the set of representable numbers have been widely studied by the

point of view of their relations with iterated function systems and tilings of the complex plane,

too. For a survey on the topology of the tiles associated to bases belonging to quadratic fields we

refer to [AT04].

Expansions in complex base have several applications. For example, in the context of com-

puter arithmetics, the interesting property of these numerations systems is that they allow multi-

plication and division of complex base in a unified manner, without treating real and imaginary

part separately — see [Knu71], [Gil84] and [FS03]. Representation in complex base have been also

used in cryptography with the purpose of speeding up honerous computations such as modu-

lar exponentiations [DJW85] and multiplications over elliptic curves [Sol00]. Finally we refer to

[Pic02] for a dissertation on the applications of the numerations in complex base to the compres-

sion of images on fractal tilings.

Organization of the chapter. Most of the arguments of this chapter laying on geometrical

properties, in Section 2 we show some results on complex plane geometry. In Section 3 we charac-

terize the shape and the extremal points of the convex hull of the set of representable numbers. In

Section 4 we give a necessary and sufficient condition to have a convex set of representable num-

bers, this property being sufficient for a full representability of complex numbers. Finally Section

5 contains an overview of the main results and possible further developments.

17
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2. Geometrical background

By using the isometry between C and R2 we extend to C some definitions which are proper

of the plane geometry.

Elements of C are considered vectors (or sometimes points) and we endowe C with the scalar

product u · v := |u||v| cos(arg u − arg v). In this setting a semiplane Sv,n in C may be defined

starting by a point v and a vector n, the normal vector of Sv,n, with the formula Sv,n := {x ∈
C | (x − v) · n ≥ 0}. A polygon is the bounded intersection of a finite number of semiplanes. A

polygon can be equivalently be defined as the finite region of C contained in a closed chain of

segments, the edges, whose endpoints are the vertices. If two adjacent edges belong to the same

line, namely if they are adjacent and parallel, then they are called consecutive and their common

endpoint is a degenerate vertex. If a vertex is not degenerate, it is called extremal point. Starting

from an ordered set of vertices V we may construct the corresponding polygon by joining with

segments the elements of V. The relation between the sets of vertices and polygons is clearly not

one-to-one, e.g. by removing the degenerate vertices the polygon does not change. Thus we may

call equivalent those (ordered) set of vertices defining the same polygon. From now on, when we

say that the vertices of a given polygon P are listed in a certain set V we mean that V belongs to

the equivalence class of vertices induced by P and denoted V(P).

The convex hull of a set X ⊂ C is the smallest convex set containing X. When X is finite, its

convex hull is called simplex of X and it is a polygon whose vertices are in X. The relation below

immediately follows by the definitions:

(27) P is a convex polygon with vertices in X + X ⊆ P ⇔ P is the simplex of X.

REMARK 2.1. A convex polygon is the simplex of its vertices.

NOTATION 2.1. The convex hull of a set X is denoted by Hcon(X).

Through this chapter we deal only with convex polygons. We now study the convex hull of

the set P ∪ (P + t), being P a (convex) polygon, t ∈ C and P + t := {x + t | x ∈ P}.

We assume that the vertices are indexed so to result counter-clockwise ordered. The opera-

tions on the indices of the vertices are considered modulo their number. Normal vectors of the

edges are assumed to have positive scalar product with any point of the polygon, namely they are

“internal” to the polygon.

THEOREM 2.1. Let P be a polygon with vertices in VP := {v0, . . . , vl−1} and let t be a translation

vector. Then there exists only two indices i1, i2 ∈ {0, . . . , l − 1} such that

ni1−1 · t < 0 and ni1 · t ≥ 0(28)

ni2−1 · t > 0 and ni2 · t ≤ 0.(29)

Moreover the convex hull of P ∪ (P + t) is a polygon whose vertices are:

(30) vi1, . . . , vi2, vi2 + t, . . . , vi1−1 + t, vi1 + t.

PROOF. We divide the proof in several parts. In Part 1 we prove the first statement of the

theorem, Part 2 simply contains a definition of the polygon Pt whose vertices are listed in (30). In

Part 3, Part 4 and Part 5 are proved technical results ensuring P ∪ (P + t) ⊆ Pt , this relation being

proved in Part 6. We conclude the proof in Part 7. Figure 1 shows some stages of this proof.

Part 1. The indices i1 and i2 are well defined.
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Let ni be the normal vector to the edge vector vi+1 − vi, for i = 0, . . . , l − 1. First note that the

convexity of P is equivalent to the relation

(31) arg(ni) ≤ arg(ni+1)

for every i = 0, . . . , l − 1.

Since ni · t ≥ 0 if and only if | arg ni − arg t| ≤ π/2, the monotonicity of the arg(ni)’s implies

that there exist only two indices i1 and i2 respectively satisfying (28) and (29).

Part 2. Definition of Pt, the candidate convex hull of P ∪ (P + t).

Define the index sets:

I+ := {i | ni · t ≥ 0} and I− := {i | ni · t < 0};

recall that Sv,n is the semiplane {x ∈ C | (x − v) · n ≥ 0} and define

Pt :=
⋂

i∈I+

Svi,ni
∩ Svi2

,t⊥ ∩
(
⋂

i∈I−
Svi+t,ni

)
∩ Svi,−t⊥ .

By construction, Pt is the (convex) polygon whose vertices are listed in (30).

Part 3. P and P + t are contained in Svi2
,t⊥ ∩ Svi1

,−t⊥ .

First simplification. As

(x + t) · ±t⊥ = x · ±t⊥ + t · ±t⊥ = x · ±t⊥,

we just need to show that P ⊆ Svi2
,t⊥ ∩ Svi1

,−t⊥ , because this implies P + t ⊆ Svi2
,t⊥ ∩ Svi1

,−t⊥ .

Second simplification. First remark that

- P =
⋂l−1

i=0 Svi,ni
⊆ Svi2−1,ni2−1

∩ Svi2
,ni2

;

- Svi2−1,ni2−1
= Svi2

,ni2−1
;

- P =
⋂l−1

i=0 Svi,ni
⊆ Svi1−1,ni1−1

∩ Svi1
,ni1

;

- Svi1−1,ni1−1
= Svi1

,ni1−1
.

Hence

(32) Svi2
,ni2−1

∩ Svi2
,ni2

⊆ Svi2
,t⊥ .

and

(33) Svi1
,ni1−1

∩ Svi1
,ni1

⊆ Svi1
,−t⊥ .

are sufficient conditions for P ⊆ Svi2
,t⊥ ∩ Svi1

,−t⊥ . We show only (32), because the proof of (33) is

similar.

Proof of (32). Set x ∈ Svi2
,ni2−1

∩ Svi2
,ni2

. Then, by the definition of semiplane, (x − vi2) · ni2−1 ≥ 0

and (x − vi2) · ni2 ≥ 0 and we may deduce:

(34) | arg(x − vi2)− arg ni2−1| ≤
π

2

and

(35) | arg(x − vi2) − arg ni2 | ≤
π

2
.

We now distinguish the cases arg(x − vi2) ≥ arg t⊥ and arg(x − vi2) < arg t⊥.
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Suppose arg(x − vi2) ≥ arg t⊥. As (34) implies arg(x − vi2)− arg ni2−1 ≤ π
2 and the definition

of i2, and in particular t · ni2−1 > 0, implies arg ni2−1 − arg t − π
2 < 0, we have:

| arg(x − vi2) − arg t⊥| = arg(x − vi2) − arg t − π

2

= arg(x − vi2) − arg ni2−1 + arg ni2−1 − arg t − π

2
≤ π

2
.

Hence (x − vi2) · t⊥ ≥ 0 and x ∈ Svi2
,t⊥ .

Suppose now arg(x − vi2) < arg t⊥. First note that since t · ni2−1 > 0 and since it follows by

(31) that arg ni2−1 ≤ arg ni2 we get

(36) arg t − arg ni2 ≤ arg t − arg ni2−1 <
π

2
.

Now t · ni2 ≤ 0 implies | arg t− arg ni2 | ≥ π/2 and this, together with (36) implies arg t− arg ni2 ≤
−π/2 and hence

(37) arg t +
π

2
− arg ni2 ≤ 0.

Moreover we have by (35) that arg ni2 − arg(x − vi2) ≤ π
2 and this, together with (37) implies:

| arg(x − vi2) − arg t⊥| = arg t +
π

2
− arg(x − vi2)

= arg t +
π

2
− arg ni2 + arg ni2 − arg(x − vi2) ≤

π

2
.

As in the previous case, we may deduce by the inequality above that x ∈ Svi2
,t⊥ .

Part 4. If i ∈ I− then Svi,ni
⊆ Svi+t,ni

.

If x ∈ Sni,vi
then i ∈ I− and the definition of I− imply

(x − (vi + t)) · ni = (x − vi) · ni − t · ni ≥ (x − vi) · ni ≥ 0

and, consequently, x ∈ Svi+t,ni
.

Part 5. If i ∈ I+ then Svi+t,ni
⊆ Svi,ni

.

Similarly to the proof in Part 4 , i ∈ I+ and the definition of I+ imply that for every x ∈ Svi+t,ni
:

(x − vi) · ni = (x − (vi + t)) · ni + t · ni ≥ (x − (vi + t)) · ni ≥ 0

and, consequently, x ∈ Svi,ni
.

Part 6. P ∪ (P + t) ⊆ Pt.

We separately prove P ⊆ Pt and P + t ⊆ Pt.

P
Part 3
= P ∩

(
Svi2

+t⊥ ∩ Svi1
,−t⊥

)
=

l−1⋂

i=0

Svi,ni
∩
(

Svi2
+t⊥ ∩ Svi1

,−t⊥
)

=
⋂

i∈I+

Svi,ni
∩
⋂

i∈I−
Svi,ni

∩
(

Svi2
+t⊥ ∩ Svi1

,−t⊥
)

Part 4
⊆

⋂

i∈I+

Svi,ni
∩
⋂

i∈I−
Svi+t,ni

∩
(

Svi2
+t⊥ ∩ Svi1

,−t⊥
)

= Pt
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and

P + t
Part 3
= (P + t) ∩

(
Svi2

+t⊥ ∩ Svi1
,−t⊥

)
=

l−1⋂

i=0

Svi+t,ni
∩
(

Svi2
+t⊥ ∩ Svi1

,−t⊥
)

=
⋂

i∈I+

Svi+t,ni
∩
⋂

i∈I−
Svi+t,ni

∩
(

Svi2
+t⊥ ∩ Svi1

,−t⊥
)

Part 5
⊆

⋂

i∈I+

Svi,ni
∩
⋂

i∈I−
Svi+t,ni

∩
(

Svi2
+t⊥ ∩ Svi1

,−t⊥
)

= Pt.

Part 7. Pt is the convex hull of P ∪ (P + t).

We prove Pt = Hcon(P∪ (P + t)) by double inclusion. The inclusion ⊇ immediately follows by the

fact that Pt is a convex set containing P ∪ (P + t). On the other hand P ∪ (P + t) ⊂ Pt also implies

VP ∪ (VP + t) ⊂ Pt and the vertices of Pt, listed in (30), are in VP or in VP + t. Then it follows by

the relation (27) that Hcon(VP ∪ (VP + t)) = Pt. As Pt = Hcon(VP ∪ (VP + t)) ⊆ Hcon(P ∪ (P + t)),

thesis follows. �

COROLLARY 2.1. Let P be a convex polygon with l edges and let t be a translation vector. Then

Pt := Hcon(P ∪ (P + t)) has l + 2 (possibly consecutive) edges. Moreover l edges of Pt are parallel to the

edges of P and 2 edges are parallel to the translation.

PROOF. It immediately follows by the list of vertices given in (30). �

COROLLARY 2.2. Let P be a convex polygon with e extremal points and let t be a translation vector.

Then:

(a) if t is not parallel to any edge of P then Pt = Hcon(P ∪ (P + t)) has e + 2 extremal points;

(b) if t is parallel to 1 edge of P then Pt = Hcon(P ∪ (P + t)) has e + 1 extremal points;

(c) if t is parallel to 2 edges of P then Pt = Hcon(P ∪ (P + t)) has e extremal points.

PROOF. Let us suppose that P has l edges and let us denote d := l − e the number of degen-

erate vertices. By definition, a vertex v is degenerate if the normal vectors of its adjacent edges

are equal. We denote ni the normal vector to the edge vector vi+1 − vi. It follows by (30) that the

normal vectors of Pt are the following:

ni1 , . . . , ni2−1, t⊥, ni2 , . . . , ni1−1,−t⊥

with i1 and i2 satisfying:

ni1−1 · t < 0 and ni1 · t ≥ 0;

ni2−1 · t ≥ 0 and ni2 · t < 0.

It immediately follows by the definition of i1 and i2 that ni1−1 6= ni1 and ni2−1 6= ni2 . Moreover t⊥

is not equal to ni1−1 and ni2 , otherwise the scalar products ni1−1 · t and ni2 · t would be null. Thus

by denoting lt the number of vertices of Pt, by dt the number of the degenerate vertices and by et

the number of extremal points, by Corollary 2.1 we have that lt = l + 2 and :

dt =





d if t⊥ is not parallel to ni1 and to ni2−1;

d + 1 if t⊥ is parallel to ni1 or to ni2−1;

d + 2 if t⊥ is parallel to ni1 and to ni2−1.

Hence thesis follows by the relation et = lt − dt. �
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v2

v3

v1

v0

v4

v3 + t

v4 + t

v0 + t

v1 + t

v2 + t

t

(a) P and P + t

v4 + t

v0 + t

t

n0

n0 · t < 0

n3 · t < 0

n1

n2

n3

v2

v1

v3

v1 + t

v3 + t

n2 · t > 0

n1 · t > 0

(b) Selection of special indices: i1 = 1 and i2 = 3

t

S
vi2

,t⊥

S
vi1

,−t⊥

(c) P ∪ (P + t) ⊂ Svi1
,−t⊥ ∩ Svi2

,t⊥

t

⋃
i∈ I+

Svi,ni
⋃

i∈ I+
Svi+t,ni

(d)
⋂

i∈I+ Svi+t,ni
⊆ ⋂

i∈I+ Svi,ni

⋃
i∈ I− Svi,ni

⋃
i∈ I− Svi+t,ni

t

(e)
⋂

i∈I− Svi,ni
⊆ ⋂

i∈I− Svi+t,ni

t

v1 v1 + t

v0 + t

v4 + t

v3 + tv3

v2

(f) Pt is the convex hull of P ∪ (P + t)

Figure 1: Various stages of the proof of Theorem 2.2: in particular (b) corresponds to Part 1, (c),(d)

and (e) to Part 3,4 and 5 and (f) is a graphical representation of Part 6 and Part 7.

COROLLARY 2.3. Let P be a polygon with 2l pairwise parallel edges. Set n−
vi

:= ni−1 = (vi − vi−1)
⊥

and n+
vi

:= ni = (vi+1 − vi)
⊥ with i = 0, . . . , 2l − 1 and let t be a translation vector. Moreover let i1 be

an index satisfying:

(38) n−
vi1

· t < 0 and n+
vi1

· t ≥ 0

or

(39) n−
vi1

· t = 0 and n+
vi1

· t > 0
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If we define Pt := Hcon(P ∪ (P + t)), then

(40) {vi1 , . . . , vi1+l , vi1+l + t . . . , vi1+2l(≡ vi1) + t} ∈ V(Pt).

PROOF. If (38) holds, it suffices to note that the parallelism between the edges implies nvi+l
=

−nvi
, hence nvi1+l−1

· t > 0 and nvi1+l−1
· t ≤ 0. Then thesis follows immediately by Theorem 2.1

with i2 := i1 + l.

If (39) is true, then consider the following notations. Set a the smallest integer such that

na · t = 0. We may assume without loss of generality that a = i1 − 1 and, consequently, that

n−
va
· t < 0, n+

va
· t = n−

va+1
· t = 0 and n+

va+1
· t > 0. Otherwise any other vertex complied between

va and vi1 would be degenerate and it would not act on the shape of the polygon. Now, since a

satisfies (38), the reasonings in the first part of the proof imply that we may apply (40) to a and

get:

(41) V := {va, va+1, . . . , va−1+l, va+l, va+l + t, va+1+l + t, . . . , va−1 + t, va + t} ∈ V(Pt).

The vertices va and, for reasons of symmetry, va+l + t are degenerate vertices because:

(va+1 − va)
⊥ · t = 0 = −t⊥ · t = (va − (va + t))⊥ · t.

Hence

V ≡ {va+1, . . . , va−1+l, va+l, va+1+l + t, . . . , va−1 + t, va + t} ∈ V(Pt).

Now let us consider the list of vertices given in (40). By recalling a = i1 − 1, we get

V′ := {va+1, . . . , va−1+l, va+l, va+1+l, va+1+l + t, . . . , va−1 + t, va + t, va+1 + t}
and, similarly to the case V, we may deduce that va+1 + t and va+1+l are degenerate vertices.

Hence

V′ ≡ {va+1, . . . , va−1+l, va+l, va+1+l + t, . . . , va−1 + t, va + t} ≡ V ∈ V(Pt).

�

REMARK 2.2. The notations in Corollary 2.3 are slightly modified with respect the previous results in

view of its further application to the proof of Theorem 2.3.

We conclude this section with the following result on the convexity of P ∪ P + t.

LEMMA 2.1. Let P be a convex polygon with 2l pairwise parallel edges and let t be a translation vector.

Suppose that t is parallel to the edge e.

Then P ∪ (P + t) is a convex set if and only if |t| ≤ |e|.

PROOF. We may assume without loss of generality that the vertices adjacent to e are extremal

points equal to 0 and 1 so that e = [0, 1], |e| = 1 and, as e and t are parallel, t ⊂ R. We finally

assume t ≥ 0.

Only if part.

Suppose |t| > 1. Since P is convex then P ∩ R = [0, 1] and (P + t) ∩ R = [ |t|, 1 + |t| ], then

(P ∪ (P + t)) ∩ R = [0, 1] ∪ [ |t|, 1 + |t| ]. As |t| > 1 these intervals are disjoint, hence P ∪ (P + t)

is not convex.

If part

Define KP := max{ℑ(x) | x ∈ P} and suppose KP ≥ 0: this is equivalent to assume that the

polygon belongs to {x ∈ C|ℑ(x) ≥ 0} and clearly it does not imply a loss of generality . Since P is

convex, for every 0 ≤ k ≤ K the set P∩ {x ∈ C|ℑ(x) = k} is a segment in the form Ik + i · k. As the



24 2. EXPANSIONS IN COMPLEX BASE

edges of P are pairwise parallel and P is convex, |Ik| ≥ |e| = 1. Hence, by denoting Ik := [ak, bk],

|t| < 1 implies:

(Ik + i · k) ∪ (Ik + i · k + t) = ([ak, bk] ∪ [ak + t, bk + t]) + i · k

= [ak, bk + t] + i · k

⊂ P ∪ (P + t).

(42)

We want to prove that P ∪ (P + t) is a convex set by showing that it contains any convex

combination of its points. So fix x, y ∈ P ∪ P + t. If x and y are both in P or in P + t, the convexity

of P implies the thesis. Otherwise suppose x ∈ P and y ∈ P + t and consider a convex combination

λx + (1 − λ)y, with λ ∈ [0, 1]. Remark that y ∈ P + t implies that x′ := y − t ∈ P and we have:

λx + (1 − λ)y = λx + (1 − λ)x′ + (1 − λ)t.

Since x and x′ are both in P then x′′ := λx + (1−λ)x′ ∈ P and, in particular, x′′ belongs to Ik + i · k

for some 0 ≤ k ≤ K. Thus t ≥ 0 implies

ak ≤ ℜ(x′′) + (1 − λ)ℜ(t) ≤ bk +ℜ(t) = bk + |t|.

By (42) we have λx + (1 − λ)y = x′′ + (1 − λ)t ∈ Ik + i · k ⊂ P ∪ (P + t) and this completes the

proof. �

3. Characterization of the convex hull of representable numbers

In this section we investigate the shape of the convex hull of the set of representable numbers

in base qn,p := pe
2π
n i and with alphabet A. We adopt the following notations.

NOTATION 2.2. We denote by Λn,p,A the set of representable numbers in base qn,p := pe
2π
n i and with

alphabet A, namely Λn,p,A =: {∑
∞
k=1 xkq−k

n,p | xk ∈ A}. We define Xn,p := {∑
n−1
j=0 xjq

j
n,p | xj ∈ {0, 1}}

and Pn,p the convex hull of Xn,p, namely Pn,p := Hcon(Xn,p). As Xn,p is finite, Pn,p is a polygon. When p

is fixed, it is usually omitted in the subscripts.

The following result represents a first simplification of our problem: in fact the characteriza-

tion of the convex hull of the infinite set Λn,p,A is showed to be equivalent to the study of Pn,p,

namely the convex hull of the (finite) set Xn,p, i.e. Pn,p.

PROPOSITION 2.1. For every n ≥ 1, p > 1 and qn,p = pe
2π
n i:

(43) Hcon(Λn,p,A) =
max A − min A

pn − 1
· Pn,p +

n−1

∑
j=0

q
j
n,p min A.

PROOF. We may deduce by the relation qn
n,p = pn that for any sequence (xk) ∈ Aω:

∞

∑
k=1

xk

qk
n,p

=
n−1

∑
j=0

∞

∑
k=1

xkn−j

q
kn−j
n,p

=
n−1

∑
j=0

q
j
n,p

∞

∑
k=1

xkn−j

qkn
n,p

=
n−1

∑
j=0

q
j
n,p

∞

∑
k=1

xkn−j

pkn

=
n−1

∑
j=0

q
j
n,p x̃j

(44)



3. CHARACTERIZATION OF THE CONVEX HULL OF REPRESENTABLE NUMBERS 25

with x̃j := ∑
∞
k=1 xkn−j p

−kn ∈
[

min A
pn−1 , max A

pn−1

]
. Hence:

Hcon

(
Λn,p,A

)
= Hcon

({
n−1

∑
j=0

q
j
n,p x̃j | x̃j ∈

{
min A

pn − 1
,

max A

pn − 1

}})

=
max A − min A

pn − 1
Hcon(Xn,p) +

n−1

∑
j=0

q
j
n,p min A.

�

We now give a geometrical description of the convex hull of Λn,p,A.

THEOREM 2.2 (Convex hull of the representable numbers in complex base). For every n ≥ 1,

p > 1 and qn,p = pe
2π
n i, the convex hull Hcon(Λn,p,A) is a polygon with the following properties:

(a) the edges are pairwise parallel to q0
n,p, . . . , qn−1

n,p ;

(b) if n is odd then Hcon(Λn,p,A) has 2n extremal points;

(c) if n is even then Hcon(Λn,p,A) has n extremal points.

PROOF. First recall that we defined

(45) Xn,p =

{
n−1

∑
j=0

xjq
j
n,p | xj ∈ {0, 1}

}
and Pn,p = Hcon(Xn,p).

Our proof is oriented to show that Pn,p has the properties (a), (b) and (c) ; in fact being these

properties invariant by rescaling and translation, Proposition 2.1 ensures the thesis.

In order to lighten the notations, the subscript p is omitted so that qn = qn,p, Xn = Xn,p and

Pn = Pn,p. We divide the proof in three parts.

Part 1. The edges of Pn are pairwise parallel to q0
n, . . . , qn−1

n .

To the end of studying Pn, we consider the sets

Xn,m :=

{
m−1

∑
j=0

xjq
j | xj ∈ {0, 1}

}
;

for m = 1, . . . , n. Clearly Xn,n = Xn and the following recursive relation holds:

(46)





Xn,1 = {0, 1};

Xn,m = Xn,m−1 ∪ (Xn,m−1 + qm−1
n )

which, when applied to the convex hulls Pn,m := Hcon(Xn,m), becomes:

(47)





Pn,1 = [0, 1];

Pn,m = Hcon

(
Pn,m−1 ∪ (Pn,m−1 + qm−1

n )
)

.

We remark that Pn,1 can be looked at as a polygon with two vertices and with two overlapped and

parallel to q0
n edges. Moreover since the convex hull of a finite set is a polygon, Pn,m fullfills the

conditions of Corollary 2.1 for every m = 1, . . . , n. Hence by iteratively applying Corollary 2.1 we

deduce that Pn,m has pairwise parallel edges and every couple of edges is parallel either to q0
n or

to any of the successive translation, i.e. q1
n, . . . , qm−1

n . When m = n we get (a).

Part 2. If n is odd then Pn has 2n extremal points.

First observe that n odd implies that q0
n, . . . , qn−1

n are pairwise independent. We showed above

that for every m = 1, . . . , n the edges of the polygon Pn,m−1 are parallel to q0
n, . . . , qm−2

n and, conse-

quently, the translation qm−1
n is not parallel to any edge. Hence, denoting en,m the number of the
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extremal points of Pn,m, the first part of Corollary 2.1 implies that en,m is defined by the recursive

relation: 



en,1 = 2

en,m = en,m−1 + 2

for every m = 1, . . . , n. Hence en,n = 2n.

Part 3. If n is even then Pn has n extremal points.

If n is even then qm+n/2
n is parallel to qm

n for every m = 1, . . . , n/2. Since Pn,m has pairwise parallel

edges, we deduce by (a) and (c) in Corollary 2.2 that en,m is defined by the relation:




en,0 = 0;

en,m = en,m−1 + 2 if m = 1, . . . , n/2;

en,m = en,m−1 if m = n/2 + 1, . . . , n;

hence en,n = n and this concludes the proof. �

EXAMPLE 2.1. If n = 3 and if p > 1 then for every alphabet A the convex hull of Λn,p,A is an

hexagon. If n = 4 and if p > 1 then for every alphabet A the convex hull of Λn,p,A is a rectangle.

(a) Convex hull of X3,21/3 (b) Convex hull of X4,21/4

Figure 2: Convex hull of X3,21/3 and of X4,21/4 . Remark that when A = {0, 1} then Pn,p =

Hcon(Xn,p) coincides with Hcon(Λn,p,A).

After establishing the shape of the convex hull of Λn,p,A we are now interested on the explicit

characterization of its extremal points. By Proposition 2.1, this is equivalent to characterize the

extremal points of Pn,p and we shall focus on this problem. Let us see some examples.

EXAMPLE 2.2. We have by a direct computation that for every p > 1 the set of extremal points of P3,p,

say E (P3,p), is

E (P3,p) = {1 , 1 + q3,p , q3,p , q3,p + q2
3,p , q2

3,p , q2
3,p + 1}.

EXAMPLE 2.3. We have by a direct computation that for every p > 1 the set of extremal points of P4,p,

say E (P4,p), is

E (P4,p) = {1 + q4,p , q4,p + q2
4,p , q2

4,p + q3
4,p q3

4,p + 1}.

Example 2.2 and Example 2.3 suggest that the set of extremal points of Pn,p has an internal

structure. This structure becomes more evident if we recall that the vertices of Pn,p are element of

Xn,p and in particular they are (finite) expansions in base qn,p and if we focus on the sequences of

binary coefficients associated to the extremal points. This point of view requires some notations.
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(a) Convex hull of Λ3,21/2,{0,1} (b) Convex hull of

Λ4,21/2,{0,1}

(c) Convex hull of Λ5,21/2,{0,1}

(d) Convex hull of Λ6,21/2,{0,1} (e) Convex hull of Λ7,21/2,{0,1} (f) Convex hull of Λ8,21/2,{0,1}

Figure 3: The set Λn,21/2,{0,1}, with n = 3, . . . , 9 is approximated with the set of expansions with

length 14. Remark that q8,21/2 = 1 + i is a Gaussian integer that has been studied, for instance, in

[Gil81].

1

q3 + 1

q2
3 + 1

q3

q2
3 + q3

q2
3

Figure 4: Extremal points of P3,p with p = 21/3. When the alphabet is {0, 1}, this coincides with

the convex hull of ΛA,n,p.
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NOTATION 2.3. Set (x0 · · · xn−1) a sequence in {0, 1}n. Define (x0 · · · xn−1)q := ∑
n−1
j=0 xjq

j and

introduce the circular shift σ on the finite sequences: σ(x0x1 · · · xn−1) := (x1 · · · xn−1x0). The closure of

(x0 · · · xn−1) with respect to σ is denoted by Orb(x0 · · · xn−1) := {σj(x0x1 · · · xn−1) | j = 0, . . . , n− 1}.

Finally define Orb(x0 · · · xn−1)q := {σj(x0x1 · · · xn−1)q | j = 0, . . . , n − 1}.

EXAMPLE 2.4. The following relations hold for every p > 1 and they are established by mean of a

(symbolic) computer program. To lighten the notations, the subscript p is omitted: e.g. we set qn := qn,p.

E (P3) = {1 , 1 + q3 , q3 , q3 + q2
3 , q2

3 , q2
3 + 1}.

= {(100)q3 , (110)q3, (010)q3, (011)q3, (001)q3, (101)q3}
= Orb(100)q3 ∪ Orb(110)q3;

E (P4) = {1 + q4 , q4 + q2
4 , q2

4 + q3
4 q3

4 + 1}.

= {(1100)q4, (0110)q4, (0011)q4, (1001)q4}
= Orb(1100)q4;

E (P5) = {(11000)q5, (11100)q5, (01100)q5, (01110)q5, (00110)q5,

(00111)q5, (00011)q5, (10011)q5, (10001)q5, (11001)q5}
= Orb(1100)q5 ∪ Orb(11100)q5;

E (P6) = {(111000)q6, (011100)q6, (001110)q6,

(000111)q6, (100011)q6, (110001)q6}
= Orb(111000)q6.

In Example 2.4 the set of extremal points E (Pn,p) is shown to be intimately connected with the

sequences (1⌊n/2⌋0n−⌊n/2⌋) and (1⌈n/2⌉0n−⌈n/2⌉) when n = 3, 5 and with the sequence (1n/20n/2)

when n = 4, 6. We now prove that this is a general result.

THEOREM 2.3. Let n ≥ 1, p > 1 and A an alphabet and denote E (Λn,p,A) the set of the extremal

points of Hcon(Λn,p,A). If n is odd, then:

E (Λn,p,A) =
max A − min A

pn − 1

(
Orb(1⌊n/2⌋0n−⌊n/2⌋)qn,p ∪ Orb(1⌈n/2⌉0n−⌈n/2⌉)qn,p

)

+
n−1

∑
j=0

min A q
j
n,p;

while if n is even:

E (Λn,p,A) =
max A − min A

pn − 1
Orb(1n/20n/2)qn,p +

n−1

∑
j=0

min A q
j
n,p.

PROOF. Fix p > 1 and set qn = qn,p, Xn = Xn,p = {∑
n−1
j=0 xjq

j
n,p | xj ∈ {0, 1}}; Pn = Pn,p =

Hcon(Xn,p). By Proposition 2.1 it suffices to characterize the extremal points of Pn and, in particu-

lar, to show that if n is odd then

(48) E (Pn) = Orb(1⌊n/2⌋0n−⌊n/2⌋)qn ∪ Orb(1⌈n/2⌉0n−⌈n/2⌉)qn ;

while if n is even:

(49) E (Pn) = Orb(1n/20n/2)qn .
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The idea of the proof is to iteratively construct a set of vertices for Pn, say V(Pn) ∈ V(Pn), and

to select from it the extremal points — see Figure 5 for the construction of V(P9). To this end we

consider Xn,m := {∑
m−1
j=0 xjq

j
n | xj ∈ {0, 1}} and Pn,m := Hcon(Xn,m) with m = 1, . . . , n. Remark

that Xn,n = Xn and Pn,n = Pn. In the cases n = 1, 2, respectively corresponding to a positive and

to a negative real base, thesis follows by a direct computation. Hence we may complete the proof

by assuming n > 2.

For the moment we do not distinguish between the even and odd n and we organize the

remaining proof in several parts. Part 1 and Part 2 are two stages of the construction of V(Pn), in

Part 3 the vertices of V(Pn) are expressed in terms of sequences, namely the recursive formulae

presented in Part 2 are explicited. In Part 4 the extremal points of Pn are selected from V(Pn).

Part 1. Characterization of V(Pn,m) with 1 ≤ m ≤ ⌈n/2⌉.

We prove by recurrence on m that

V(Pn,m) = {(0n)qn , (10n−1)qn , . . . , (1m−10n−(m−1))qn ,

(1m0n−m)qn , (01m−10n−m)qn , . . . , (01m−10n−m)qn}
= {(0m0n−m)qn , (10m−10n−m)qn , . . . , (10m−10n−m)qn ,

(1m0n−m)qn , (01m−10n−m)qn , . . . , (01m−10n−m)qn},

the last equality being displayed to the end of underline the symmetric structure of V(Pn,m).

Now, if m = 1 then Xn,1 = {0, 1} and Pn,1 = [0, 1]; hence

(50) V(Pn,1) = {0, 1} = {(0n)qn , (10n−1)qn}

and this ensures the base of the induction.

Suppose now that m > 1 and that:

V(Pn,m−1) = {(0n)qn , (10n−1)qn , . . . , (1m−20n−(m−2))qn ,

(1m−10n−(m−1))qn , (01m−20n−(m−1))qn , . . . , (0m−210n−(m−1))qn}.

Then Pn,m−1 has 2(m − 1) pairwise parallel edges. Our aim is to apply Corollary 2.3 with P =

Pn,m, l = m − 1 and t = qm−1
n so to get an explicit characterization of the vertices of Pn,m =

Hcon(Pn,m−1 ∪ (Pn,m−1)). To this end we need a vertex v such that setting n− and n+ the normal

vectors to the adjacent to v edges, n−
v · qm−1

n < 0 and n+
v · qm−1

n ≥ 0. Our candidate is the vertex

v = (0n)qn . The normal vectors to the edges adjacent to v are given by the formulae:

(51) n−
v :=

(
(0n)qn − (0m−210n−(m−1))qn

)⊥
= −(qm−2

n )⊥qn

and

(52) n+
v :=

(
10n−1))qn − (0n)qn

)⊥
= (1)⊥

hence

n−
v · qm−1

n
(51)
= − |qm−2

n ||qm−1
n | cos

(
arg(qm−2

n )⊥ − arg(qm−1
n )

)

=− |qm−2
n ||qm−1

n | cos

(
m − 2

n
2π +

π

2
− m − 1

n
2π

)

=− |qm−2
n ||qm−1

n | cos

(
− 1

n
2π +

π

2

)
< 0
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for every n > 2. Moreover

n+
v · qm−1

n
(52)
= |1||qm−1

n | cos(arg(1)⊥ − arg(qm−1
n ))

=|qm−1
n | cos

(
π

2
− m − 1

n
2π

)
≥ 0

because we have supposed m ≤ ⌈n/2⌉. Then it follows by Corollary 2.3 that:

V(Pn,m) = {(0n)qn , (10n−1)qn , . . . , (1m−20n−(m−2))qn , (1m−10n−(m−1))qn ,

(1m−10n−(m−1))qn + qm−1
n , (01m−20n−(m−1))qn + qm−1

n ,

. . . , (0m−210n−(m−1))qn + qm−1
n , (0n)qn + qm−1

n }
= {(0n)qn , (10n−1)qn , . . . , (1m−20n−(m−2))qn , (1m−10n−(m−1))qn ,

(1m0n−(m))qn , (01m−10n−m)qn , . . . , (0m−2110n)qn , (0m−110n−m)qn}.

and this proves at once the inductive step and (3).

Part 2. Characterization of V(Pn,m) with ⌈n/2⌉ ≤ m ≤ n via recursive formulae.

We prove that for every ⌈n/2⌉ ≤ m ≤ n

(53) V(Pn,m) = {vm
j , um

j | j = 0, . . . , m − 1}

where vm
j and um

j are defined by the recursive formulae. When m = ⌈n/2⌉:





v
⌈n/2⌉
j = 1j0n−j

u
⌈n/2⌉
j = 0j1⌈n/2⌉−j0n−⌈n/2⌉ for j = 0, . . . , ⌈n/2⌉ − 1.

When m > ⌈n/2⌉:

(54)





vm
j = vm−1

j+1

um
j = um−1

j+1 + qm−1
n

for j = 0, . . . , m − 1.

We complete the definition of vm
j and um

j by setting vm
m+j := um

j and um
m+j := vm

j , with j =

0, . . . , m − 1 so that:

(55) vm
m ≡ um

0 ; vm
m+1 ≡ um

1 ; um
m ≡ vm

0 ; um
m+1 ≡ vm

1 .

Note that for every j = 0, . . . , 2⌈n/2⌉ − 1:

(56) v
⌈n/2⌉
j+1 − v

⌈n/2⌉
j =





qj if j < ⌈n/2⌉;

−qj−⌈n/2⌉ if j ≥ ⌈n/2⌉.

We prove (53) by induction on m. The case m = ⌈n/2⌉ follows by Part 1, in fact (3) implies:

V(Pn,⌈n/2⌉) = {(0n)qn , (10n−1)qn , . . . , (1⌈n/2⌉−10n−(⌈n/2⌉−1))qn

(1⌈n/2⌉0n−⌈n/2⌉)qn , (01⌈n/2⌉−10n−⌈n/2⌉)qn , . . . , (0⌈n/2⌉−110n−⌈n/2⌉)qn}

= {v
⌈n/2⌉
j , u

⌈n/2⌉
j | j = 0, . . . , ⌈n/2⌉ − 1}.

Let us assume ⌈n/2⌉ < m < n and (53) as inductive hypothesis. As in the proof of Part

1. we want to apply Corollary 2.3 to Pn,m+1 = Hcon(Pn,m ∪ (Pn,m + qm
n )) with P = Pn,m, l = m,

t = qm
n and an appropriate vertex v satisfying either the condition n−

v · qm
n < 0 and n+

v · qm
n ≥ 0

or n−
v · qm

n = 0 and n+
v · qm

n > 0 . Our candidate is v = vm
1 . Set km := m − ⌈n/2⌉ so that km ∈
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{0, . . . , m − ⌈n/2⌉} ⊂ {0, . . . , m − 1}. Remark that m < n implies km < ⌈n/2⌉. By explicating the

recursive relation (54) for j = 0, 1, 2 we have :

vm
0 = vm−1

1 = · · · = v
⌈n/2⌉
km

= (1km0n−km)qn(57)

vm
1 = vm−1

2 = · · · = v
⌈n/2⌉
km+1 = (1km+10n−(km+1))qn(58)

vm
2 = vm−1

3 = · · · = v
⌈n/2⌉
km+2 .(59)

We now distinguish the cases odd and even n.

If n is odd then n/2 < ⌈n/2⌉ and

n−
v1
· qm

n =(vm
1 − vm

0 )⊥ · qm
n

(57)−(58)
= (v

⌈n/2⌉
km+1 − v

⌈n/2⌉
km

)⊥ · qm
n

(56)
= (qkm

n )⊥ · qm
n

=|qm−1
n ||qm

n | cos
(

arg(qkm
n )⊥ − arg(qm

n )
)

=|qm−1
n ||qm

n | cos

(
π

2
− ⌈n/2⌉

n
2π

)
< 0

while qn
n ∈ R implies:

n+
v1
· qm

n = (vm
2 − vm

1 )⊥ · qm
n

(58)−(59)
= (v

⌈n/2⌉
km+2 − v

⌈n/2⌉
km+1 )⊥ · qm

n

(56)
=





(qkm+1
n )⊥ · qm

n if km + 1 < ⌈n/2⌉;

−(q0
n)⊥ · qn

n if km + 1 = ⌈n/2⌉;

=




|qkm

n ||qm
n | cos

(
arg(qkm+1

n )⊥ − arg(qm
n )
)

if km + 1 < ⌈n/2⌉;

−|1||qm
n | cos

(
arg(1)⊥ − arg(qn

n)
)⊥

if km + 1 = ⌈n/2⌉;

=




|qm−1

n ||qm
n | cos

(
π
2 − 1

n 2π
)
≥ 0 if km + 1 < ⌈n/2⌉;

−|qkm
n ||qm

n | cos
(

π
2

)
= 0 if km + 1 = ⌈n/2⌉.

We then have:

(60) n−
v1
· qm

n < 0 and n+
v1
· qm

n ≥ 0.

Suppose now that n is even. Then km = m − n/2, (qkm
n )⊥ · qm

n = 0 and, consequently,

n−
v1
· qm

n =(vm
1 − vm

0 )⊥ · qm
n

(57)−(58)
= (v

⌈n/2⌉
km+1 − v

⌈n/2⌉
km

)⊥ · qm
n

(56)
= (qkm

n )⊥ · qm
n = 0;
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on the other hand n > 2 implies:

n+
v1
· qm

n =(vm
2 − vm

1 )⊥ · qm
n

(58)−(59)
= (v

⌈n/2⌉
km+2 − v

⌈n/2⌉
km+1 )⊥ · qm

n

(56)
=





(qkm+1
n )⊥ · qm

n if km + 1 < ⌈n/2⌉;

−(q0
n)⊥ · qn−1

n if km + 1 = ⌈n/2⌉;

=




|qm−1

n ||qm
n | cos

(
km+1

n 2π + π
2 − m

n 2π
)

> 0 if km + 1 < ⌈n/2⌉;

−|qkm
n ||qm

n | cos
(

π
2 − n−1

n 2π
)

> 0 if km + 1 = ⌈n/2⌉.

In view of the equality and of the inequality above we have n−
v1
· qm

n = 0 and n+
v1
· qm

n > 0.. This,

together with (60), implies that v1 always satisfies one of the conditions of Corollary 2.3. Conse-

quently

V (Pn,m+1) = V (Hcon(Pn,m) ∪ (Pn,m) + qm
n )

= {vm
1 , . . . , vm

m+1 ≡ u0,

vm
m+1 + qm

n ≡ um
1 + qm

n , . . . , um
m+1 + qm

n ≡ vm
1 + qm

n }

and (53) follows.

Part 3. Explicitation of the characterizing formulae for V(Pn,m) with ⌊n/2⌋ + 1 ≤ m ≤ n.

By applying the result of Part 3. to m = n we get that:

(61) V(Pn) = {vn
j , un

j | j = 0, . . . , n − 1}.

with vn
j and un

j recursively defined in (54). In order to give an explicit expression for vn
j and un

j we

need to extend to um
0 and um

1 the formulae given in (57) and (58). Recall that we defined for every

⌈n/2⌉ ≤ m ≤ n the integer km := m − ⌈n/2⌉; we have:

um
0 = um−1

1 + qm−1
n = · · · = u

⌊n/2⌋+1
km

+ qm−1
n + · · ·+ q

⌈n/2⌉
n = (0km1⌈n/2⌉0n−m)qn(62)

um
1 = um−1

2 + qm−1
n = · · · = u

⌈n/2⌉
km+1 + qm−1

n + · · ·+ q
⌊n/2⌋+1
n = (0km+11⌈n/2⌉−10n−m)qn .(63)

Let us remark that for every couple of integers j1 ≤ n1 satisfying n1 + j1 = n + j we have

vn
j = v

n1
j1

. Now, for every j = 0, . . . , n − 1 let mj := ⌈(n + j)/2⌉; then

vn
j = vn−1

j+1 = . . . =





v
mj

mj−1 if n + j is odd

v
mj
mj

if n + j is even

≡





u
mj−1

1 if n + j is odd

u
mj

0 if n + j is even

=





(0
kmj 1⌈n/2⌉−10n−(mj−1))qn if n + j is odd

(0
kmj 1⌈n/2⌉0n−mj)qn if n + j is even

(64)
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and

un
j = un−1

j+1 + qn−1
n = . . . =





u
mj

mj−1 + q
mj
n + · · ·+ qn−1

n if n + j is odd

u
mj
mj

+ q
mj
n + · · ·+ qn−1

n if n + j is even

≡





v
mj−1

1 + q
mj
n + · · ·+ qn−1

n if n + j is odd

v
mj

0 + q
mj
n + · · ·+ qn−1

n if n + j is even

=





(1
kmj 0⌈n/2⌉−11n−(mj−1))qn if n + j is odd

(1
kmj 0⌈n/2⌉1n−mj)qn if n + j is even.

(65)

We now distinguish the cases n odd and n even.

If n is odd then for every j = 0, . . . , n − 1 we have kmj
= ⌈(n + j)/2⌉ − ⌈n/2⌉ = ⌊j/2⌋, hence

we may rewrite (64):

vn
j =





(0⌊j/2⌋1⌈n/2⌉−10n−(⌊j/2⌋+⌈n/2⌉−1))qn if j is even

(0⌊j/2⌋1⌈n/2⌉0n−(⌊j/2⌋+⌈n/2⌉))qn if j is odd.

Hence:

(vn
j )0≤j≤n−1 =(1⌈n/2⌉−10n−(⌈n/2⌉−1))qn , (1⌈n/2⌉0n−⌈n/2⌉)qn ,

. . . , (0⌊(n−1)/2⌋1⌈n/2⌉−10n−(⌊(n−1)/2⌋+⌈n/2⌉−1))qn

=(1⌈n/2⌉−10⌈n/2⌉)qn , (1⌈n/2⌉0⌈n/2⌉−1)qn , . . . , (0⌈n/2⌉−11⌈n/2⌉−10)qn .(66)

Similarly, we may deduce by (65) that:

un
j =





(1⌊j/2⌋0⌈n/2⌉−11n−(⌊j/2⌋+⌈n/2⌉−1))qn if j is even

(1⌊j/2⌋0⌈n/2⌉1n−(⌊j/2⌋+⌈n/2⌉))qn if j is odd

and that

(un
j )0≤j≤n−1 =(0⌈n/2⌉−11n−(⌈n/2⌉−1))qn , (0⌈n/2⌉1n−⌈n/2⌉)qn ,

. . . , (1⌊(n−1)/2⌋0⌈n/2⌉−11n−(⌊(n−1)/2⌋+⌈n/2⌉−1))qn

=(0⌈n/2⌉−11⌈n/2⌉)qn , (0⌈n/2⌉1⌈n/2⌉−1)qn , . . . , (1⌈n/2⌉−10⌈n/2⌉−11)qn .(67)

If n is even then for every j = 0, . . . , n − 1 we have kmj
= ⌈(j + n)/2⌉ − ⌈n/2⌉ = ⌈j/2⌉.

Similarly to the previous case, by performing appropriate substitutions in (64) and (65) we get

(68) (vn
j )0≤j≤n−1 = (1n/20n/2)qn , (01n/2−10n/2)qn , . . . , (0n/21n/2−10)qn

and

(69) (un
j )0≤j≤n−1 = (0n/21n/2)qn , (10n/2−11n/2)qn , . . . , (1n/20n/2−11)qn .

Part 4. Selection of the extremal points in V(Pn).

We begin by supposing that n is odd. As by construction the vertices of Pn listed in (66) and (67)

are (counter-clockwise) ordered, by subtracting any couple of adjacent vertices we may neatly list

the vector edges of Pn and get that

vn
1 − vn

0 = q
⌈n/2⌉−1
n−1 ; vn

2 − vn
1 = −1; . . . ; vn

n ≡ un
0 − vn

n−1 = qn−1
n ;

un
1 − un

0 = −q
⌈n/2⌉−1
n ; un

2 − un
1 = 1; . . . ; vn

n ≡ un
0 − vn

n−1 = −qn−1
n .

(70)
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Since n is odd, all the powers of qn are pairwise independent, thus (70) implies that Pn has no

consecutive edges and all the vertices vj and uj, with j = 0, . . . , n− 1, are extremal points. Observe

that σ(vn
j ) = vn

j+2(≡ un
j+2−n if j + 2 ≥ n). Then, since vn

0 = (1⌈n/2⌉−10⌈n/2⌉) = (1⌊n/2⌋0n−⌊n/2⌋)

and vn
1 = (1⌈n/2⌉0⌈n/2⌉−1) = (1⌈n/2⌉0n−⌈n/2⌉), we get (48).

If n is even we may use (68) and (69) to see that the (ordered) the vector edges of Pn are:

vn
1 − vn

0 = 1 ; vn
2 − vn

1 = −qn/2
n ; . . . ; vn

n ≡ un
0 − vn

n−1 = −qn−1
n ;

un
1 − un

0 = −1 ; un
2 − un

1 = qn/2
n ; . . . ; vn

n ≡ un
0 − vn

n−1 = qn−1
n .

As qn/2
n = −pn/2 is parallel to −1, the couples of vector edges (±q

j
n,∓q

n/2+j
n ) are consecu-

tive. Hence the common vertices to these edges, namely vn
2j and un

2j with j = 0, . . . , n/2 − 1, are

degenerate vertices. As σ(vn
2j+1) = vn

2j+3(≡ un
j+2−n if j + 2 ≥ n), we deduce by vn

1 = (1n/20n/2)qn

that

E (Pn) = Orb(1n/20n/2))qn

and the proof is complete. �

(a) P9,1 . (b) P9,2. (c) P9,3. (d) P9,4 .

(e) P9,5 .

(f) P9,6. (g) P9,7 . (h) P9,8. (i) P9,9.

Figure 5: Various stages of the construction of P9(= P9,9) with p = 21/9. Remark how P9,5 =

P9,⌈9/2⌉ represents a conjunction between the structures of P9,1, . . . , P9,4 and P9,6, . . . , P9,9.
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4. Representability in complex base

In this section we give a characterization of the convexity of Λn,p,A.

THEOREM 2.4. The set of representable numbers in base qn,p and alphabet A = {a1, . . . , aJ} is convex

if and only if

(71) max
j=1,...,J−1

aj+1 − aj ≤
max A − min A

pn − 1
.

PROOF. We assume without loss of generality that min A = 0 and we divide the proof in

several parts.

Part 1. Λn,p,A is the attractor of an appropriate iterated function system FA.

Let FA := { f0, f1, . . . , fm} the iterated function system defined on Hcon(Λn,p,A) whose basic func-

tions are f j(x) := 1
q (x + aj) — see Figure 6. For every x = ∑

∞
i=1

xi

qi ∈ Λn,p,A we have

f j(x) =
1

q
x +

1

q
aj =

∞

∑
i=2

xi−1

qi
+

aj

q
∈ Λn,p,A.

Moreover if x1 = aj then

f−1
j (x) = qx − aj = x1 + q

∞

∑
i=2

xi

qi
− aj =

∞

∑
i=1

xi+1

qi
∈ Λn,p,A

and, consequently ∪m
j=0 f j(Λn,p,A) = Λn,p,A. Hence Λn,p,A is the attractor of FA.

Part 2. First simplification: Λn,p,A is a convex set if and only if FA(Hcon(Λn,p,A)) is a convex set.

Since Proposition 2.1 ensures Hcon(Λn,p,A) = max A
pn−1 Pn,p, we have

Hcon(FA(Hcon(Λn,p,A))) =
1

q
Hcon




m⋃

j=0

Pn,p
max A

pn − 1
+ aj




=
1

q
Hcon

(
Pn,p

max A

pn − 1
∪ (Pn,p

max A

pn − 1
+ max A)

)

=
1

q

max A

pn − 1
Hcon

(
Pn,p ∪ (Pn,p + pn − 1)

)
.

(72)

Now we proved in Theorem 2.3 that Pn,p = {vj, uj|j = 0, . . . , n − 1} with vj and uj satisfying

the following relations:

vj+n = uj and uj+n = vj for every j = 0, . . . , n − 1;

and, by explicit formulas given in (66) and (67) for n odd and (68) and (69) for n even:

(73) v2 − v1 = 1;

(74) vj = qvj+2; uj − 1 = quj+2;

(75) v0 −
1

q
v1 = −1

q
;

1

q
v1 − u0 = − pn − 1

q

By applying Corollary 2.3 to P = Pn,p, l = n and t = 1 and vi1 = v1, see (73), we may continue the

chain of equalities in (72) and get
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Hcon(FA(Hcon(Λn,p,A))) =
1

q

max A

pn − 1
Hcon({v1, . . . , vn−1, u0, u1, u1 + pn − 1,

. . . , un−1 + pn − 1, v0 + pn − 1, v1 + pn − 1})

=
max A

pn − 1
H({1

q
v1, . . . ,

1

q
vn−1,

1

q
u0,

1

q
u1

1

q
(u1 + pn − 1),

. . . ,
1

q
(un−1 + pn − 1),

1

q
(v0 + pn − 1),

1

q
(v1 + pn − 1)})

(74)
=

max A

pn − 1
Hcon

(
{1

q
v1, v0, . . . , vn−1,

1

q
u1 + pn − 1, u0, . . . , un−1}

)

(75)
=

max A

pn − 1
Hcon ({v0, . . . , vn−1, u0, . . . , un−1})

=
max A

pn − 1
Pn.

Consequently

(76) Hcon(FA(Hcon(Λn,p,A))) = Hcon(Λn,p,A)

and

Λn,p,A is convex ⇔ Λn,p,A = Hcon(Λn,p,A)

⇔ Hcon(Λn,p,A) is the attractor of FA

⇔ Hcon(Λn,p,A) = FA(Hcon(Λn,p,A))

(76)⇔ FA(Hcon(Λn,p,A)) is convex.

Part 3. Second simplification: FA(Hcon(Λn,p,A)) is a convex set if and only if (71) holds.

As FA(Hcon(Λn,p,A)) = 1
q

(⋃m
j=0 Pn,p

max A
pn−1 + aj

)
the convexity of FA(Hcon(Λn,p,A)) is equivalent

to the one of
⋃m

j=0 Pn,p
max A
pn−1 + aj. By a geometrical evidence

⋃m
j=0 Pn,p

max A
pn−1 + aj is convex if and

only if for every j = 0, . . . , m − 1

(77) (Pn,p
max A

pn − 1
+ aj) ∪ (Pn,p

max A

pn − 1
+ aj+1) = aj + (Pn,p

max A

pn − 1
∪ (Pn,p

max A

pn − 1
+ aj+1 − aj))

is convex. It follows by Theorem 2.2 that Pn,p
max A
pn−1 has a couple of edges which are parallel to the

translation aj+1 − aj and by (73) length of such edges is equal to max A
pn−1 . Hence thesis follows by

Lemma 2.1. �

COROLLARY 2.4. Let A = {a1, . . . , aJ}. If maxj=1,...,J−1 aj+1 − ai ≤ max A−min A
pn−1 then every

x ∈ max A−min A
pn−1 Pn,p + ∑

n−1
k=0 min Aqk

n,p has a representation in base qn,p and alphabet A.

PROOF. Immediate. �

EXAMPLE 2.5. If p = 21/n and A = {0, 1} then Λn,p,A is a convex set coinciding with Pn,p. In

particular Λn,p,A is an 2n-gon if n is odd and it is an n-gon if n is even.

EXAMPLE 2.6. If A = {0, 1, . . . , ⌊pn⌋} then Λn,p,A is a convex set or, equivalently,
⌊pn⌋
pn−1 Pn,p is

completely representable.
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(a) (b) (c)

(d) (e) (f)

Figure 6: First 6 iterations of F{0,1} = {x/q3,2, 1/q3,2(x + 1)} over Hconv(Λ3,2,{0,1}).

5. Overview of original contributions, conclusions and further developments

Characterization of the convex hull of representable numbers. First, a geometrical tool has

been proved.

THEOREM. Let P be a polygon with vertices in VP := {v0, . . . , vl−1} and let t be a translation vector.

Then there exists only two indices i1, i2 ∈ {0, . . . , l − 1} such that ni1−1 · t < 0 and ni1 · t ≥ 0 and

ni2−1 · t > 0 and ni2 · t ≤ 0. Moreover the convex hull of P ∪ (P + t) is a polygon whose vertices are:

(78) vi1 , · · · , vi2, vi2 + t, . . . , vi1−1 + t, vi1 + t.

The corollaries of the result above have been applied in the following results.

THEOREM. For every n ≥ 1, p > 1 and qn,p = pe
2π
n i, the convex hull Hcon(Λn,p,A) is a polygon

with the following properties:

(a) the edges are pairwise parallel to q0
n,p, . . . , qn−1

n,p ;

(b) if n is odd then Hcon(Λn,p,A) has 2n extremal points;

(c) if n is even then Hcon(Λn,p,A) has n extremal points.
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(a) Λ3,21/3,{0,1} (b) Λ3,21/3+0.1,{0,1} (c) Λ3,21/3+0.2,{0,1}

(d) Λ3,21/3+0.3,{0,1} (e) Λ3,21/3+0.4,{0,1} (f) Λ3,21/3+0.5,{0,1}

Figure 7: Λ3,21/3+0.1k,{0,1}, with k = 0, . . . , 5, is approximated with the set of expansions with

length 14.

THEOREM. Let n ≥ 1, p > 1 and A an alphabet and denote E (Λn,p,A) the set of the extremal points

of Hcon(Λn,p,A). If n is odd, then:

E(Λn,p,A) =
max A − min A

pn − 1

(
Orb(1⌊n/2⌋0n−⌊n/2⌋)qn,p ∪Orb(1⌈n/2⌉0n−⌈n/2⌉)qn,p

)

+
n−1

∑
j=0

min A q
j
n,p;

while if n is even:

E(Λn,p,A) =
max A − min A

pn − 1
Orb(1n/20n/2)qn,p +

n−1

∑
j=0

min A q
j
n,p;

Representability in complex base. We proved the following characterization of convex rep-

resentable sets.

THEOREM. The set of representable numbers in base qn,p and alphabet A = {a1, . . . , aJ} is convex if

and only if maxj=1,...,J−1 aj+1 − aj ≤ max A−min A
pn−1 .

The result above leads to the following representability result.

COROLLARY. Let A = {a1, . . . , aJ}. If maxj=1,...,J−1 aj+1 − aj ≤ max A−min A
pn−1 then every x ∈

max A−min A
pn−1 Pn,p + ∑

n−1
k=0 min Aqk

n,p has a representation in base qn,p and alphabet A.
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Conclusions and further developments. The set of representable numbers can be viewed as

the attractor of an appropriate (linear) iterated function system, say Fq,A, depending on the base

and on the alphabet. The characterization of the convex hull of the set of representable numbers

gives an operative method for defining a bounded domain for Fq,A.

Here a (sufficient) condition for a full Hausdorff dimension for the set of representable num-

bers has been given, but the general problem is open. The relations established in this chapter

could be useful for an answer — at least for bases with rational argument. The definition of a

global greedy algorithm and a partial characterization based on digit-by-digit comparison could

be encouraged by these arguments, as well.



CHAPTER 3

Expansions in negative base

Ito and Sadahiro recently introduced and characterized expansions in non-integer negative

base −q in [IS09]. They have also shown that the (−q)-shift is sofic if and only if the (−q)-

expansion of the number − q
q+1 is eventually periodic. The aim of this chapter is to pursue their

work, by showing that many properties of the positive base numeration systems extend to the

negative base case, the main difference being the sets of numbers that are representable in the two

different cases.

1. Introduction

Expansions in integer negative base −b, where b ≥ 2, seem to have been introduced by

Grünwald in [Gru85], and rediscovered by several authors, see the historical comments given

by Knuth [Knu71]. The choice of a negative base −b and of the alphabet {0, . . . , b − 1} is interest-

ing, because it provides a signless representation for every number (positive or negative). In this

case it is easy to distinguish the sequences representing a positive integer from the ones repre-

senting a negative one: denoting (w.)−b := ∑
k
i=0 wk(−b)i for any w = wk · · ·w0 in{0, . . . , b − 1}∗

with no leading 0’s, we have N = {(w.)−b | |w| is odd}. The classical monotonicity between the

lexicographical ordering on words and the represented numerical values does not hold anymore

in negative base, for instance 3 = (111.)−2, 4 = (100.)−2 and 111 >lex 100. Nevertheless it is

possible to restore such a correspondence by introducing an appropriate ordering on words, in

the sequel denoted by ≺ and called the alternate order.

Representations in negative base also appear in some complex base number systems, for in-

stance base q = 2i where q2 = −4 (see [Fro99] for a study of their properties from an automata

theoretic point of view).

Organization of the chapter. In Section 2 the Ito and Sadahiro’s (−q)-expansions and the

alternate order are introduced. Section 3 is devoted to the proof of a general result which is

not related to numeration systems but to the alternate order, and which is of interest in itself.

We define a symbolic dynamical system associated with a given infinite word s satisfying some

properties with respect to the alternate order on infinite words. We design an infinite countable

automaton recognizing it. We then are able to characterize the case when the symbolic dynamical

system is sofic (resp. of finite type). Using this general construction we can prove in Section 4 that

the (−q)-shift is a symbolic dynamical system of finite type if and only if the (−q)-expansion of

− q
q+1 is purely periodic.

In Section 5 we show that the entropy of the (−q)-shift is equal to log q.

We then focus on the case where q is a Pisot number, that is to say, an algebraic integer greater

than 1 such that the modulus of its Galois conjugates is less than 1. The natural integers and the

Golden Mean are Pisot numbers. We extend all the results known to hold true in the Pisot case for

q-expansions to the (−q)-expansions. In particular we prove that, if q is a Pisot number, then every

number from Q(q) has an eventually periodic (−q)-expansion, and thus that the (−q)-shift is a

sofic system. When q is a Pisot number, it is known that addition in base q — and more generally

40
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normalization in base q on an arbitrary alphabet — is realizable by a finite transducer [Fro92].

We show that this is still the case in base −q. Finally in Section 7 we introduce an algorithm of

conversion from positive to negative base.

2. Preliminaries on expansions in non-integer negative base

2.1. Definition and first properties of (−q)-expansions. Ito and Sadahiro [IS09] introduced

a greedy algorithm to represent any real number in real base −q, q > 1, and with digits in A−q :=

Aq = {0, 1, . . . , ⌊q⌋}. Similarly to the positive case, the definition of a (−q)-expansion lays on the

iteration of an appropriate map defined from an interval of length 1 onto itself.

We start with some general definitions.

DEFINITION 3.1 ((−q)-representations). Let x be a real number. A (−q)-representation of x is a

sequence x−d+1x−d+2 · · · x0x1x2 · · · satisfying:

x =
d−1

∑
i=0

x−i(−q)i +
∞

∑
i=1

xi

(−q)i
.

The value ∑
d−1
i=0 x−i(−q)i is called the integer part of the representation and the value ∑

∞
i=1

xi

(−q)i is called

the fractional part. We also write x = (x−d+1x−d+2 · · · x0.x1x2 · · · )−q, with the symbol . dividing the

integer and the fractional part.

We now define the class of (−q)-expansions.

DEFINITION 3.2 ((−q)-transformation, (−q)-expansions). The (−q)-transformation T−q is de-

fined from the interval I−q :=
[
− q

q+1 , 1
q+1

)
onto itself, and for every x ∈ I−q,

(79) T−q(x) = −qx − ⌊−qx +
q

q + 1
⌋.

For every x ∈ I−q, every digit xn with n ≥ 1 of the (−q)-expansion of x is defined by:

(80) xn = ⌊−qTn−1
−q (x) +

q

q + 1
⌋;

If x 6∈ Iq denote d the smallest integer such that x/(−q)d ∈ I−q. The (−q)-expansion of x is the sequence

x−d+1x−d+2 · · · x0x1x2 · · · where for every n ≥ 1

x−d+n = ⌊−q Tn−1
−q

(
x

(−q)d

)
+

q

q + 1
⌋.

For every x such that its (−q)-expansion has the integer part equal to zero, we define γ−q(x) := x1x2 · · · .

REMARK 3.1.

1. For every x in I−q, γ−q(x) is well defined.

2. Even if 1
q+1 6∈ I−q, the map γ−q is well defined in 1

q+1 and it satisfies γ−q(
1

q+1 ) = 0γ−q(− q
q+1).

In fact, since 1
q+1 6∈ I−q, we fix d = 1 and consider 1

(−q)d
1

q+1 = − 1
(−q)2

q
q+1 ∈ I−q. As

(81) γ−q

(
− 1

(−q)2
· q

q + 1

)
= 00γ−q(−

q

q + 1
),

the (−q) expansion of 1
q+1 is (0.0γ−q(

q
q+1 ))−q = (.0γ−q(

q
q+1 ))−q.
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3. We explicity show that γ−q(x) is a (−q)-representation of x ∈ I−q. In fact for every n it follows by the

definitions given in (79) and in (80) that:

x = ⌊−qx +
q

q + 1
⌋ 1

(−q)
+

T−q(x)

(−q)

=
x1

(−q)
+

1

(−q)

T−q(⌊−qx + q
q+1⌋ 1

q +
T−q(x)

q )

q

=
x1

(−q)
+

x2

(−q)2
+

T2
−q(x)

(−q)2

=
x1

(−q)
+

x2

(−q)2
+ · · ·+ xn

(−q)n
+

Tn
−q(x)

(−q)n

(82)

and, by taking the limit for n to infinity, we get

x =
∞

∑
i=1

xi

(−q)i
= π−q(γ−q(x)).

We now specify the second part of Remark 3.1 to the case of q = G, where G is the Golden

Mean, and we introduce the problem of comparing the (−q)-expansions.

EXAMPLE 3.1. Set q = G, where G is the Golden Mean. Then

γ−G(− G

G + 1
) = 1(0)ω and γ−G(

1

G + 1
) = 01(0)ω.

Note that − G
G+1 <

1
G+1 but γ−G(− G

G+1) >lex γ−G( 1
G+1 ).

Example 3.1 points out that by choosing a negative base −q we loose the monotonicity be-

tween numerical value of a (−q)-expansion and lexicographic order. Nevertheless by introduc-

ing a different order, called alternate order, such a correspondence with the numerical values is

restored.

DEFINITION 3.3 (Alternate order). Let x = x1x2 · · · , y = y1y2 · · · be infinite words or finite

words with same length on an alphabet.

Let x 6= y and let i be the smallest index such that xi 6= yi. Then the alternate order ≺ satisfies:

(83) x ≺ y if and only if (−1)i(xi − yi) < 0.

EXAMPLE 3.2. γ−G(− G
G+1 ) = 1(0)ω ≺ 01(0)ω = γ−G( 1

G+1 ).

The alternated order was implicitely defined in [Gru85] and lately reintroduced in [IS09]. We

now show that this order inherits in the negative case the properties of <lex in the positive case.

PROPOSITION 3.1. Fix q > 1. Let x and y be in I−q. Then x < y if and only if γ−q(x) ≺ γ−q(y).

PROOF. Suppose that x = γ−q(x) ≺ γ−q(y) = y. Then there exists k ≥ 1 such that xi = yi for

1 ≤ i < k and (−1)k(xk − yk) < 0. Suppose that k is even, k = 2p. Then x2p ≤ y2p − 1. Thus

x − y ≤ −q−2p + ∑
i≥2p+1

xi(−q)−i − ∑
i≥2p+1

yi(−q)−i
< 0,

since ∑i≥1 x2p+i(−q)−i and ∑i≥1 y2p+i(−q)−i are in I−q. The case k = 2p + 1 is similar. The

converse is immediate. �
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2.2. Characterization of the (−q)-shift.

DEFINITION 3.4 ((−q)-shift). The (−q)-shift S−q is defined as the closure of the set of the (−q)-

expansions and it is a subshift of AZ
−q.

For every q > 1, the S−q can be characterized by a Parry-type result. To this end, define the

sequence:

(84) γ∗
−q(

1

q + 1
) =





γ−q(
1

q+1 ) if γ−q(
1

q+1) is not periodic with odd period

(0d1 · · · d2p(d2p+1 − 1))ω if γ−q(
1

q+1) = (d1 · · · d2pd2p+1)
ω.

REMARK 3.2. Even if the expansion γ∗
−q(

1
q+1) is not necessarily the quasi-greedy expansion of 1

q+1 ,

note the similarity with (15).

THEOREM 3.1 (S. Ito and T. Sadahiro [IS09]). Let q > 1 be a real number. A word (xi)i∈Z belongs

to S−q if and only if for all n ∈ Z

(85) γ−q(−
q

q + 1
) � xnxn+1 · · · � γ∗

−q(
1

q + 1
).

EXAMPLE 3.3 (follows Example 3.1). Set q = G, the Golden Mean. Then (xi)i∈Z belongs to S−G

if and only if for all n ∈ Z

1(0)ω � xnxn+1 · · · � 01(0)ω.

Hence (xi)i∈Z ∈ S−G if and only if (xi)i∈Z has no factors in the form 102k+11, with k ∈ N.

REMARK 3.3. Let us outline the analogies between Parry’s result for positive base and Theorem 3.1.

Parry’s Theorem states that the sequences belonging to q-shift can be characterized using the following

tools: an order on the sequences, i.e. <lex, which preserves the order on the numerical values; the boundary

sequence γ̃q(1), i.e. the quasi-greedy expansion 1 this being the upper bound of Tq; the iteration of the

lexicographic comparison on every shift of the candidated sequence.

In the context of negative based expansions the alternate order ≺ plays the role of the lexicographical

ordering (see Proposition 3.1). The upper bound in (85) is also in this case an expansion of the upper bound

of T−q, namely 1
q+1 . At a first glance, the condition “from below” in (85) is an asymmetry with respect

to the condition (17). Nevertheless since the lower bound of Tq is 0, the adapted version of this condition

to the positive case “collapses” in a comparison with (0)ω, which is always trivially satisfied. Finally the

iteration of the comparison in (85) on every shift of the sequence is required, as well.

This comparison on the conditions means to show that the structures of the q-expansions and of the

(−q)-expansion are in a certain sense similar: this intuitive argument is formalized in Section 5 where Sq

and S−q are shown to have the same entropy.

We conclude this section by restating Theorem 3.1 in a form which is more orientated to the

theory of symbolic dynamical systems.

LEMMA 3.1. Let γ−q(− q
q+1 ) = d1d2 · · · and let

S = {(wi)i∈Z ∈ AZ
q | ∀n, d1d2 · · · � wnwn+1 · · · } :

(a) if γ−q(− q
q+1 ) is not a periodic sequence with odd period, then S−q = S;

(b) if γ−q(− q
q+1 ) is a periodic sequence of odd period, γ−q(− q

q+1) = (d1 · · · d2p+1)
ω, then S−q = S∩ S′

where

S′ = {(wi)i∈Z ∈ AZ
q | ∀n, wnwn+1 · · · � (0d1 · · · d2p(d2p+1 − 1))ω}.
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3. Symbolic dynamical systems and the alternate order

In this section we study the properties of the subshift S, defined as follows. Let s = s1s2 · · · be

a word in AN such that s1 = max A and for each n ≥ 1, s � snsn+1 · · · . Denote by S the subshift:

S := {w = (wi)i∈Z ∈ AZ | ∀n, s � wnwn+1 · · · }.

REMARK 3.4. The interest on S is motivated by Lemma 3.1. In fact, as we prove in next section, the

properties of S together with Lemma 3.1 provide a generalization of Theorem 1.8.

First of all we prove that F(S), namely the set of factors of the subshift S, can be recognized by

an automaton. To this end, we construct a countable infinite automaton AS as follows (see Fig.1).

The set of states is N. For each state i ≥ 0, there is an edge i
si+1−→ i + 1. Thus the state i is the name

corresponding to the path labelled s1 · · · si. If i is even, then for each a such that 0 ≤ a ≤ si+1 − 1,

there is an edge i
a−→ j, where j is such that s1 · · · sj is the suffix of maximal length of s1 · · · sia. If i

is odd, then for each b such that si+1 + 1 ≤ b ≤ s1 − 1, there is an edge i
b−→ j where j is maximal

such that s1 · · · sj is a suffix of s1 · · · sib; and if si+1 < s1 there is one edge i
s1−→ 1. By construction,

the deterministic automaton AS recognizes exactly the words w such that every suffix of w is

lower than or equal to s with respect to � and the result below follows.

0 1 2 3
s1 s2 s3

[0, s1 − 1] s1

[s2 + 1, s1 − 1]

[0, s3 − 1]

s1

[s4 + 1, s1 − 1]

s4

Figure 1: The automaton AS: [a, b] denotes {a, a + 1, . . . , b} if a ≤ b, ε else. In this figure it is

assumed that s1 > sj for j ≥ 2.

PROPOSITION 3.2. The subshift S = {w = (wi)i∈Z ∈ AZ | ∀n, s � wnwn+1 · · · } is recognizable

by the countable infinite automaton AS.

EXAMPLE 3.4. Let us consider the sequence s = 1(0)ω. By definition, AS is constructed as follows

(see Fig.2). The set of states is N. There are an edge 0
1−→ 1 and a looping edge 0

0−→ 0. For each state

i > 0, there is an edge i
0−→ i + 1. If i is odd, then there is also an edge i

1−→ 1.

0 1 2 3 4 5
1 0 0 0 0 0

0 1 1

1

Figure 2: The automaton AS with S = {w = (wi)i∈Z ∈ AZ | ∀n, 1(0)ω � wnwn+1 · · · }.

The automaton AS accepts any finite word excepting those in the form 102k+11, if fact there are no

edges labeled 1 leaving the even states. In other words, AS recognizes AN \ {102k+11 | k ∈ N}.

On the other hand, the condition x 6∈ S is equivalent to σn(x) = 102k+11x′, for some k, n ≥ 0 and

some x′ ∈ Aω. This implies that a word is in the form 102k+11t if and only if it is not a factor of S. Then

F(S) = A∗ \ {102k+11 | n ∈ N} and AS recognizes F(S).
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PROPOSITION 3.3. The subshift S = {w = (wi)i∈Z ∈ AZ | ∀n, s � wnwn+1 · · · } is sofic if and

only if s is eventually periodic.

PROOF. By definition, the subshift S is sofic if and only if the set of its finite factors F(S) is

recognizable by a finite automaton. Given a word u of A∗, denote by [u] the right class of u mod-

ulo F(S). Then in the automaton AS, for each state i ≥ 1, i = [s1 · · · si], and 0 = [ε]. Suppose that s

is eventually periodic, s = s1 · · · sm(sm+1 · · · sm+p)ω, with m and p minimal. Thus, for each k ≥ 0

and each 0 ≤ i ≤ p − 1, sm+pk+i = sm+i.

Case 1: p is even. Then m + i = [s1 · · · sm+i] = [s1 · · · sm+pk+i] for every k ≥ 0 and 0 ≤ i ≤ p − 1.

Then the set of states of AS is {0, 1, . . . , m + p − 1}.

Case 2: p is odd. Then m + i = [s1 · · · sm+i] = [s1 · · · sm+2pk+i] for every k ≥ 0 and 0 ≤ i ≤ 2p − 1.

The set of states of AS is {0, 1, . . . , m + 2p − 1}.

Conversely, suppose that s is not eventually periodic. Then there exists an infinite sequence

of indices i1 < i2 < · · · such that the sequences sik
sik+1 · · · are all different for all k ≥ 1. Take

any pair (ij, iℓ), j, ℓ ≥ 1. If ij and iℓ do not have the same parity, then s1 · · · si j
and s1 · · · siℓ

are not right congruent modulo F(S). If ij and iℓ have the same parity, there exists k ≥ 0 such

that si j
· · · si j+k−1 = siℓ · · · siℓ+k−1 = v and, for instance, (−1)i j+k(si j+k − siℓ+k) > 0 (with the

convention that, if k = 0 then v = ε). Then s1 · · · si j−1vsi j+k ∈ F(S), s1 · · · siℓ−1vsiℓ+k ∈ F(S),

but s1 · · · si j−1vsiℓ+k does not belong to F(S). Hence s1 · · · si j
and s1 · · · siℓ are not right congruent

modulo F(S), so the number of right congruence classes is infinite. By Theorem 1.1, F(S) is not

recognizable by a finite automaton. �

EXAMPLE 3.5. As in Example 3.4, let us consider the sequence s = 1(0)ω. The general algorithm

for the construction of AS yields the automaton in Fig.2. Nevertheless the automaton in Fig.3 is a finite

automaton recognizing F(S) = A∗ \ {102k+11 | k ∈ N} thus, by definition, S is sofic.

0

0

1

Figure 3: The finite automaton A′
S , recognizing S

REMARK 3.5. A celebrated example of subshift is the even-shift. Given a binary alphabet A = {a, b},

the even shift is the set of the bi-infinite sequences on A such that the number of occurrences of a between two

consecutive b is even. In view of Example 3.4, S = {w = (wi)i∈Z ∈ AZ | ∀n, 1(0)ω � wnwn+1 · · · }
turns out to be the even shift with alphabet {0, 1} and in A′

S can be derived by the standard construction

given, for distance, in [Lot02, Chapter 1].

In following result we establish a necessary and sufficient condition on S to be of finite type.

PROPOSITION 3.4. The subshift S = {w = (wi)i∈Z ∈ AZ | ∀n, s � wnwn+1 · · · } is a subshift of

finite type if and only if s is purely periodic.

PROOF. Suppose that s = (s1 · · · sp)ω. Consider the finite set X = {s1 · · · sn−1b | b ∈
A, (−1)n(b − sn) < 0, 1 ≤ n ≤ p}. We show that S = SX . If w is in S, then w avoids X,

and conversely. Now, suppose that S is of finite type. It is thus sofic, and by Proposition 3.3 s is
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eventually periodic. If it is not purely periodic, then s = s1 · · · sm(sm+1 · · · sm+p)ω, with m and p

minimal, and s1 · · · sm 6= ε. Let I = {s1 · · · sn−1b | b ∈ A, (−1)n(b − sn) < 0, 1 ≤ n ≤ m} ∪
{s1 · · · sm(sm+1 · · · sm+p)2k sm+1 · · · sm+n−1b | b ∈ A, k ≥ 0, (−1)m+2kp+n(b − sm+n) < 0, 1 ≤ n ≤
2p}. Then I ⊂ A+ \ F(S). First, suppose there exists 1 ≤ j ≤ p such that (−1)j(sj − sm+j) < 0

and s1 · · · sj−1 = sm+1 · · · sm+j−1. For k ≥ 0 fixed, let w(2k) = s1 · · · sm(sm+1 · · · sm+p)2ks1 · · · sj ∈
I. We have s1 · · · sm(sm+1 · · · sm+p)2ksm+1 · · · sm+j−1 ∈ F(S). On the other hand, for n ≥ 2,

sn · · · sm(sm+1 · · · sm+p)2k is ≻ than the prefix of s of same length, thus

sn · · · sm(sm+1 · · · sm+p)
2ks1 · · · sj ∈ F(S).

Hence any strict factor of w(2k) is in F(S). Therefore for any k ≥ 0, w(2k) ∈ X(S), and X(S) is thus

infinite: S is not of finite type. Now, if such a j does not exist, then for every 1 ≤ j ≤ p, sj = sm+j,

and s = (s1 · · · sm)ω is purely periodic. �

EXAMPLE 3.6. Since the sequence s = 1(0)ω is not purely periodic, by Proposition 3.4, the subshift

S = {w = (wi)i∈Z ∈ AZ | ∀n, 1(0)ω � wnwn+1 · · · } is not of finite type. This result agrees with the

fact that S avoids the infinite set {102k+11 | k ∈ N}.

EXAMPLE 3.7. Consider the alphabet A = {0, 1, 2} and s = (21)ω. By Proposition 3.4, the subshift

S = {w = (wi)i∈Z ∈ AZ | ∀n, s � wnwn+1 · · · } is of finite type. This result agrees with the explicit

computation of the minimal set of forbidden words, i.e. the finite set {20}.

REMARK 3.6. Let s′ = s′1s′2 · · · be a word in AN such that s′1 = min A and, for each n ≥ 1,

s′ns′n+1 · · · � s′. Let S′ = {w = (wi)i∈Z ∈ AZ | ∀n, wnwn+1 · · · � s′}. The statements in Proposi-

tions 3.2, 3.3 and 3.4 are also valid for the subshift S′ (with the automaton AS′ constructed accordingly).

4. A characterization of sofic (−q)-shifts and (−q)-shifts of finite type

This section is devoted to the generalization to the negative case of Theorem 1.8. In their

paper, Ito and Sadahiro characterize the sofic (−q)-shifts by a condition on the (−q)-expansion of

− q
q+1 , namely the lower bound of T−q. We now give a new proof based on the results of previous

section.

THEOREM 3.2 (S. Ito and T. Sadahiro [IS09]). The (−q)-shift is a sofic system if and only if

γ−q(− q
q+1 ) is eventually periodic.

PROOF. First of all remark that the first digits of γ−q(− q
q+1 ) and of γ−q(

1
q+1) are respectively

equal to ⌊q⌋ = max A−q and to 0 = min A−q.

Suppose now γ−q(− q
q+1 ) to be not purely periodic with an odd period. Then by Lemma 3.1

S−q is equal to S, where s = γ−q(− q
q+1 ) = s1s2 · · · and s1 = max A−q. Then it follows by

Proposition 3.3 that S−q is sofic if and only if γ−q(− q
q+1 ) is eventually periodic.

If γ−q(− q
q+1 ) is purely periodic with an odd period. Then by Lemma 3.1 S−q is equal to

S ∩ S′, where s = γ−q(− q
q+1 ), S′ is defined in Remark 3.6 and s′ = γ−q(

1
q+1 ) = s′1s′2 · · · and

s′1 = min A−q. Since the intersection of two regular sets is regular, it follows that S−q is sofic

if and only if both S and S′ are sofic, and by Proposition 3.3 this is equivalent to γ−q(− q
q+1 )

eventually periodic. �

We now prove a generalization to the negative case of the second part of Theorem 1.8.

THEOREM 3.3. The (−q)-shift is a system of finite type if and only if γ−q(− q
q+1 ) is purely periodic.
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PROOF. If γ−q(− q
q+1 ) is purely periodic with an even period, the result follows from Theo-

rem 3.1, Lemma 3.1 and Proposition 3.4. If γ−q(− q
q+1 ) is purely periodic with an odd period, the

result follows from Theorem 3.1, Lemma 3.1, Proposition 3.4, Remark 3.6, and the fact that the

intersection of two finite sets is finite.

�

EXAMPLE 3.8. Let G = 1+
√

5
2 ; then γ−G(− G

G+1) = 10ω, and the (−G)-shift is a sofic system which

is not of finite type.

EXAMPLE 3.9. Let q = G2 = 3+
√

5
2 . Then γ−q(− q

q+1 ) = (21)ω and the (−q)-shift is of finite type:

the set of minimal forbidden factors is X(S−q) = {20}.

EXAMPLE 3.10. The automaton in Fig. 4 (right) recognizing the (−G)-shift is obtained by minimiz-

ing the result of the construction of Proposition 3.2.

1

0

0

0

0

1

Figure 4: Finite automata for the G-shift (left) and for the (−G)-shift (right)

5. Entropy of the (−q)-shift

The considerations in Remark 3.3 suggest that the q-shift and the (−q)-shift have the same

entropy, that is log q. This intuition is supported by the following examples.

EXAMPLE 3.11. In view of Fig 4 we may conclude that the entropy of the G-shift and of the −G-shift

is the same. In fact the automata recognizing F(SG) and F(S−G) share the same adjacency matrix and, by

Theorem 1.2, the same entropy. By a direct computation, we have that greatest eigenvalue of the adjacency

matrix is G, hence h(S−G) = log G.

EXAMPLE 3.12. The entropy of S−G2 is log G2. This can be verified by recalling that F(S−G2) =

A∗
−G2 \ {02}, with A∗

−G2 = {0, 1, 2} (see Example 3.9). Then the minimal automaton recognizing

F(S−G2) is:

2

1

0, 1 2

with adjacency matrix

(
2 1

1 1

)
and greatest eigenvalue G2 = 3 +

√
5/2. Hence h(S−G2) = log G2.

A standard technique for computing the entropy of a subshift S is to construct a (not nec-

essarily finite) automaton recognizing F(S). Then the submatrices of the adjacency matrix are

taken into account and for every n the greatest eigenvalue λn of the submatrix of order n is com-

puted. A result proved in [Hof79] ensures that the limit λ of the sequence λn exists and it satisfies

h(S) = log λ. Unfortunately the construction of an automaton recognizing S−q and the explicit

computation of the λn’s turned out to be very complicated.

We then decided an indirect approach. Our tools are the following:

- the notion of topological entropy for one-dimensional dynamical systems, a one-dimensional

dynamical system being a couple consisting in a bounded interval I and a piecewise con-

tinuous transformation T : I 7→ I;
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- a result by Y. Takahashi establishing the relation between topological entropies of one-

dimensional and symbolic dynamical systems;

- a result by F. Shultz on the topological entropy of some one-dimensional dynamical sys-

tems.

Let us begin with the definition of topological entropy for one-dimensional dynamical systems.

DEFINITION 3.5 (topological entropy for one-dimensional dynamical systems). Let (I, T) be a

dynamical system.

For every finite cover of I, say C , set:

H(T, C) := lim sup
1

n
log N

(
n−1∨

m=0

T−mC
)

with
∨

denoting the finest common refinement and N(C) denoting the number of elements of the smallest

subcover of C , a subcover of C being a subfamily of C still covering I.

The topological entropy of (I, T) is given by the formula

(86) h(I, T) := sup H(T, C).

In [Tak80] Takahashi proved the equality between the topological entropy of a piecewise con-

tinuous dynamical system and the topological entropy of an appropriate subshift. Before stating

such a result we need a definition.

DEFINITION 3.6 (lap intervals). Let T : I 7→ I be a piecewise continuous map on the interval I. The

lap intervals I0, . . . , Il of T are closed intervals satisfying the following conditions:

(a) I0 ∪ · · · ∪ Il = I;

(b) T is monotone on each interval Ii, i = 0, . . . , l;

(c) the number l is minimal under the conditions (a) and (b).

The number l is called lap number and it is denoted lap(T).

REMARK 3.7. If the map T is piecewise linear then the lap intervals are unique and they coincide with

the intervals of continuity of T.

THEOREM 3.4 (Y. Takahashi [Tak80]). Let T be a piecewise continuous transformation over the

closed interval I on itself. Let γT : I 7→ AN
T be the map defined by the relation x 7→ x1x2 · · · with xn

satisfying Tn(x) ∈ Ixn . Define the subshift XT := γT(I) in AN.

If lap(T) is finite then:

(87) h(XT) = h(XT , σ) = h(I, T).

The entropy in the very particular case of a piecewise linear map with constant slope is ex-

plicitely given in the following result.

PROPOSITION 3.5 (F. Shultz [Shu07, Proposition 3.7]). Let T be a piecewise linear map with slope

±q. Then the topological entropy of T is equal to log q.

We now prove our result.

THEOREM 3.5. The topological entropy of S−q is equal to log q.

PROOF. Consider the dynamical system (I−q, T−q), where T−q is the (−q)-transform defined

in (79). We extend the map T−q to the closure of I−q to fullfill the conditions of Theorem 3.4. By

definition of (−q)-expansion, the subshift XTq coincides with the closure of the set of the (−q)-

expansions in AN, whose entropy is the same as S−q ⊂ AZ . As T−q is piecewise linear, the lap
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intervals coincide with the (finite) number of continuity intervals. Then by Theorem 3.4 and by

Proposition 3.5 h(S−q) = h(I−q, T−q) = log q. �

6. The Pisot case

In 4.4 we stated some results about the relation between the Pisot numbers and the eventually

periodic expansions and about the arithmetics on Pisot base. Here we take in account both of these

aspects by proposing some generalizations to the negative Pisot case.

6.1. Periodic (−q)-expansions and sofic (−q)-shifts. First of all we prove that Theorem 1.10

is still valid for the base −q.

THEOREM 3.6. If q is a Pisot number, then every element of Q(q) ∩ I−q has an eventually periodic

(−q)-expansion.

REMARK 3.8. Note that Q(q) = Q(−q).

PROOF OF THEOREM 3.6. First we introduce some notations. Denote by Mq(X) = Xd −
a1Xd−1 − · · · − ad the minimal polynomial of q, by q = q1, . . . , qd the conjugates of q and by Q

the matrix ((−qj)
−i)1≤i,j≤d. Let x be arbitrarily fixed in Q(q) ∩ I−q. Since Q(q) = Q(−q), we can

write

x = b−1
d−1

∑
i=0

ci(−q)i ,

with b and ci in Z, b > 0 as small as possible in order to have uniqueness.

Let (xi)i≥1 be the (−q)-expansion of x and define

rn = r
(1)
n = r

(1)
n (x) :=

xn+1

−q
+

xn+2

(−q)2
+ · · · = (−q)n

(
x −

n

∑
k=1

xk(−q)−k

)
;

while for 2 ≤ j ≤ d, let

r
(j)
n = r

(j)
n (x) = (−qj)

n

(
b−1

d−1

∑
i=0

ci(−qj)
i −

n

∑
k=1

xk(−qj)
−k

)
.

Moreover consider the vector Rn = (r
(1)
n , . . . , r

(d)
n ).

The proof is now splitted in three steps.

Step 1. The sequence (Rn)n≥1 is uniformly bounded.

We first remark that the last equality in (82) implies that rn(x) = Tn
−q(x), thus |rn| ≤ q

q+1 . It

remains to study r
(j)
n when 2 ≤ j. Let η = max{|qj | | 2 ≤ j ≤ d}: since q is a Pisot number, then

η < 1; this, together with xk ≤ ⌊q⌋, implies

| r
(j)
n |≤ b−1

d−1

∑
i=0

|ci|ηn+i + ⌊q⌋
n−1

∑
k=0

ηk
< C

for some positive constant C.

Step 2. Rn = b−1ZnQ for an uniquely determined Zn ∈ Zd.

First we remark that if there exists a (z
(1)
n , . . . , z

(d)
n ) in Zd such that −q satisfies the equation with

integer coefficients:

(88) rn = b−1
d

∑
k=1

z
(k)
n (−q)−k
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then Lemma 1.1 implies that (88) is satisfied by any conjugate of q, say qj, and we also have

r
(j)
n = b−1

d

∑
k=1

z
(k)
n (−qj)

−k.

Hence we only need to show that for every n there exists (z
(1)
n , . . . , z

(d)
n ) in Zd satisfying (88).

The proof is by induction on n.

Set n = 1. Since Mq(X) = Xd − a1Xd−1 − · · · − ad is the minimal polynomial of q, we have

(89) 1 = −a1(−q)−1 + a2(−q)−2 + · · ·+ (−1)dad(−q)−d.

Thus, by definition of r1 and by (89):

r1 = b−1

(
d−1

∑
i=0

ci(−q)i+1 − bx1

d−1

∑
i=0

(−1)iai(−q)i

)
= b−1

(
z
(1)
1

−q
+ · · ·+ z

(d)
1

(−q)d

)

with z
(i)
1 = ci−1 − bx1(−1)ai, for i = 1, . . . , d.

Now, let us prove the inductive step. Since rn+1 = −qrn − xn+1 and since z
(1)
n − bxn+1 ∈ Z,

we may deduce by (89) that:

rn+1 = b−1

(
z
(1)
n +

z
(2)
1

−q
+ · · ·+ z

(d)
n

(−q)d−1
− bxn+1

)
= b−1


 z

(1)
n+1

−q
+ · · ·+ z

(d)
n+1

(−q)d


 ,

for an appropriate vector of integers (z
(1)
n+1, . . . , z

(d)
n+1) and this completes the proof of (88).

Step 3. x has an eventually periodic (−q)-expansion.

As the matrix Q is invertible, we may deduce by Step 1 and by Step 2 that (Zn)n≥1 is an uniformly

bounded sequence in Zd. Hence there exist p and m ≥ 1 such that Zm+p = Zp and, consequently,

Tm+p(x) = rm+p = rp = Tp(x). Thus the (−q)-expansion of x is eventually periodic. �

REMARK 3.9. As for the positive case, Theorem 3.6 establishes a remarkable analogy with the case of

the expansion in integer base.

As a corollary we get the following result.

THEOREM 3.7. If q is a Pisot number then the (−q)-shift is a sofic system.

PROOF. By Theorem 3.6 the (−q)-expansion of − q
q+1 ∈ Q(q) is eventually periodic and by

Theorem 3.2 this implies that (−q)-shift is a sofic system. �

6.2. Normalization. The normalization in base −q is the function which maps any (−q)-representation

on an alphabet C of digits of a given number of I−q onto the (−q)-expansion of that number.

Our purpose is to generalize the following result.

THEOREM 3.8 (Ch. Frougny [Fro92]). If q is a Pisot number, then normalization in base q on any

alphabet C is realizable by a finite transducer.

DEFINITION 3.7. Denote A−q(2c) the countable infinite automaton defined as follows. The set of

states Q(2c) consists of all s ∈ Z[q] ∩ [− 2c
q−1 , 2c

q−1 ]. Transitions are of the form s
e→ s′ with e ∈

{−c, . . . , c} such that s′ = −qs + e. The state 0 is initial; every state is terminal.

LEMMA 3.2. Let C = {−c, . . . , c}, where c ≥ ⌊q⌋ is an integer and consider

Z−q(2c) =
{
(zi)i≥0 ∈ {−2c, . . . , 2c}N

∣∣∣ ∑
i≥0

zi(−q)−i = 0
}

.

Then Z−q(2c) is recognized by A−q(2c). Moreover if q is a Pisot number then the set of states of A−q(2c)

is finite.
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PROOF. If (ei)i≥0 is an infinite path on A−q(2c), call (si)i≥0 the corresponding sequence of

states. It follows by definition of the transitions that for every n ≥ 0:

n

∑
i=0

ei

(−q)i
=

sn

(−q)n
.

Then, as n goes to infinity, we get ∑
∞
i=0

ei

(−q)i = 0, hence (ei)i≥0 ∈ Z−q(2c). On the other hand every

sequence (ei)i≥0 in Z−q(2c) is an accepted path of A−q(2c), whose states are sn := −∑
∞
i=n

ei

(−q)i ,

n = 0, 1, . . . . Hence Z−q(2c) is recognized by A−q(2c).

Now we show that if q is Pisot then the set of states of A−q(2c), i.e. Q(2c), is finite. To this

end, we call Mq(X) the minimal polynomial of q and we denote by q = q1, . . . , qd the conjugates

of q. Moreover we define a norm on the discrete lattice of rank d, Z[X]/(Mq), as

(90) ||P(X)|| = max
1≤i≤d

|P(qi)|.

Every state s in Q(2c) is associated with the label of the shortest path f0 f1 · · · fn from 0 to s

in the automaton. Thus s = f0(−q)n + f1(−q)n−1 + · · · + fn = P(q), with P(X) in Z[X]/(Mq).

Since f0 f1 · · · fn is a prefix of a word of Z−q(2c), there exists fn+1 fn+2 · · · such that ( fi)i≥0 is in

Z−q(2c). Thus s = |P(q)| < 2c
q−1 . For every conjugate qi, 2 ≤ i ≤ d, |qi| < 1, and |P(qi)| < 2c

1−|qi| .
Thus every state of Q(2c) is bounded in norm, and so there is only a finite number of them. �

THEOREM 3.9. If q is a Pisot number, then normalization in base −q on any alphabet C is realizable

by a finite transducer.

PROOF. We consider the redundancy transducer R−q(c) obtained as follows. Starting from

A−q(2c), we replace each transition s
e→ s′ of A−q(2c) by a set of transitions s

a|b−→ s′, with

a, b ∈ {−c, . . . , c} and a − b = e.

By definition and by Lemma 3.2, the transducer R−q(c) recognizes the set
{
(x1x2 · · · , y1y2 · · · ) ∈ CN × CN

∣∣ ∑
i≥1

xi(−q)−i = ∑
i≥1

yi(−q)−i
}

.

Moreover it follows again by Lemma 3.2 that if q is a Pisot number, then R−q(c) is finite.

The normalization is thus obtained by keeping in R−q(c) only the outputs y belonging to the

(−q)-shift S−q. In particular, by Theorem 3.7, S−q is recognized by a finite automaton D−q. The

finite transducer N−q(c) doing the normalization is obtained by making the intersection of the

output automaton of R−q(c) with D−q. �

As a consequence of the previous theorem we have that the addition in negative Pisot base is

realizable by a finite transducer.

COROLLARY 3.1 (Addition in negative base). If q is a Pisot number and x, y and x + y are in I−q,

then the addition is realizable by a finite transducer.

PROOF. Let γ−q(x) = x1x2 · · · and γ−q(y) = y1y2 · · · . Then:

zi := xi + yi ∈ C := {0, 1, . . . , 2⌊q⌋},

the normalization on the alphabet C, say ν−q,C, yields:

γ−q(x + y) = ν−q,C(z1z2 · · · )
and, by Theorem 3.9, ν−q,C is realizable by a finite transducer. �

We conclude this section by showing that when the base is Pisot the conversion from negative

to positive base is realizable by a finite transducer.
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PROPOSITION 3.6 (Conversion from negative to positive Pisot base). If q is a Pisot number, then

the conversion from base −q to base q is realizable by a finite transducer. The result is a sequence belonging

the q-shift.

PROOF. Let x ∈ I−q, x ≥ 0, such that γ−q(x) = x1x2x3 · · · . Denote ā the signed digit (−a).

Then x1x2x3 · · · is a q-representation of x on the alphabet Ã−q = {−⌊q⌋, . . . , ⌊q⌋}. Thus the

conversion is equivalent to the normalization in base q on the alphabet Ã−q, and this follows by

Theorem 3.8. �

7. A conversion algorithm from positive to negative base

Proposition 6.2 shows the actability of the conversion from positive to negative base for a

particular class of bases, i.e. the Pisot numbers, with a finite machine. Hereafter we show an

on-line conversion algorithm (not necessarily performable by a finite state machine) for 1 < q < 2

with the only assumption on the input of being a q-expansion.

7.1. Definitions and preliminary settings. Fix 1 < q < 2 and A = {0, 1}.

DEFINITION 3.8. A conversion from q to −q is a function χ : Sq ⊂ AN 7→ AN satisfying

(91) χ(x) = y ⇒ πq(x) = qNπ−q(y)

for some non negative integer N.

We denote δq the smallest even integer satisfying:

(92) 1 ≤
δq

∑
i=1

1

qi
=

qδq − 1

qδq(q − 1)
;

and we define the following quantities:

Mq := max{πq(w) | w ∈ Aδq ∩ F(Sq)}
M−q := max{π−q(w) | w ∈ Aδq}
m−q := min{π−q(w) | w ∈ Aδq}

Denote by N the smallest integer satisfying:

(93)
Mq

q2N
≤ M−q.

REMARK 3.10. The definition of δq given in (92) implies that a q-expansion cannot contain δq consec-

utive occurrences of 1, hence Mq ≤ ∑
δq−1

i=1
1
qi . It follows by this inequality that N = 0 if q is smaller than

the Golden Mean and N = 1 otherwise.

Hereafter are stated some relations and properties of M−q and m−q.

M−q =
δq/2

∑
i=1

1

q2i
;(94)

m−q = −q

δq/2

∑
i=1

1

q2i
;(95)

M−q − m−q =
qδq − 1

qδq(q − 1)
;(96)

M−q
1

qδ
q − 1

≤ 1

qδq(q − 1)
.(97)
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Note that last inequality follows by (92) and by ∑
δq

i=1
1
qi =

qδq−1

qδq (q−1)
.

The set π−q(Aδq) contains all the numerical values in base −q of the words of length δq. The

order on π−q(Aδq) induces a (possibly partial) order on Aδq so that max Aδq = M−q and min Aδq =

M−q. We now prove a estimation from above of the difference between two consecutive values in

π−q(Aδq).

PROPOSITION 3.7. Let δq be the smallest even integer such that 1 ≤ ∑
δq

i=1
1
qi . Then for every u ∈ Aδq ,

u 6= max Aδq , there exists v ∈ Aδq such that:

(98) 0 < π−q(v)− π−q(u) ≤ 1

qδq
.

PROOF. Since u = u1 · · · uδq 6= max Aδq we can properly define k the greatest index such that

(−1)kuk < (−1)k(1 − uk). The minimality of δq implies that either:

a)

δq−2

∑
i=1

1

qi
< 1 ≤

δq−1

∑
i=1

1

qi
; or b)

δq−1

∑
i=1

1

qi
< 1.

Then we define the word v :

v :=





u1 · · · uk−1(1 − uk) · · · uδq if k > 1 and a) holds or if b) holds

(1 − u1) · · · (1 − uδq−1)uδq
if k = 1 and a) holds

Since k > 1 and b) imply ∑
δq−k

i=1
1
qi < 1, in these cases we have:

π−q(v)− π−q(u) =
1

qk
− 1

qk

δq−k

∑
i=1

1

qi
∈
(

0,
1

qδ

]
.

Finally if k = 1 and if a) holds we get again:

π−q(v)− π−q(u) =
1

q1
− 1

q1

δq−2

∑
i=1

1

qi
∈
(

0,
1

qδq

]

and this completes the proof. �

7.2. The algorithm. Fix q ∈ (1, 2) and δ := δq. Our conversion algorithm is showed in Algo-

rithm 1.

Algorithm 1

input alphabet=output alphabet={0, 1}
input: q-expansion x = x1x2 · · ·
output: sequence y := output block1 · output block2 · · · such that πq(x) = q2Nπ−q(y).

s0 := 1
qδ πq(x1x2 · · · xδ);

output block0 := empty word;

while j ≥ 1 do

{ input blockj = x(j+1)δ+1x(j+1)δ+2 · · · x(j+2)δ;

sj = qδ
(
sj−1 − q2Nπ−q(output blockj−1)

)
+ πq(input blockj)/qδ;

output blockj = max{w ∈ Aδ | π−q(w) ≤ sj
1

q2N − m−q
1

qδ−1
};

output output blockj ;

}

To prove that Algorithm 1 performs the conversion we need the following technical lemma.
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LEMMA 3.3. Let s be in the interval

Jq :=

[
qδ+2N

qδ − 1
m−q,

qδ+2N

qδ − 1
M−q − Mq

∞

∑
i=2

1

qδi

]
.

Then there exists a word w ∈ Aδ such that

(99) π−q(w) ∈ Hq,s :=

[
− M−q

qδ − 1
+

Mq

q2N

∞

∑
i=2

1

(qδq)i
+

s

q2N
,− m−q

qδ − 1
+

s

q2N

]
.

PROOF. Fix s ∈ Jq. We first show that

(100) [m−q, M−q] ∩ Hs,q 6= ∅.

To this end we estimate the end-terms of Hs,q. Set

(101) lq := − M−q

qδ − 1
+

Mq

q2N

∞

∑
i=2

1

(qδq)i
and rq := − m−q

qδ − 1
;

so that Hs,q = [lq, rq] +
s

q2N . Now we have that:

lq +
s

q2N
≤ lq +

1

q2N
max Jq = M−q;

and that

rq +
s

q2N
≥ − m−q

qδ − 1
+

1

q2N
min Jq = m−q.

Hence we may deduce (100).

Now we remark that |Hs,q| ≥ 1
qδ . In fact:

rq − lq = (M−q − m−q)
1

qδ − 1
− Mq

q2N

∞

∑
i=2

1

(qδq)i

≥ (M−q − m−q)
1

qδ − 1
− M−q

∞

∑
i=2

1

(qδq)i

=
1

qδ(q − 1)
− M−q

1

qδ(q2 − 1)

≥ 1

qδ

(
1

q − 1
− 1

qδ(q − 1)

)

≥ 1

qδ
.

Now let us distinguish the cases Hs,q ⊆ [m−q, M−q] and Hs,q 6⊆ [m−q, M−q]. If Hs,q ⊆
[m−q, M−q] then Proposition 7.1 implies that there exists an element of π−q(Aδ) in Hs,q because

|Hs,q| is larger than the minimum distance between two consecutive values of π−q(Aδ). On the

other hand if Hs,q 6⊆ [m−q, M−q] then (100) implies that Hs,q and [m−q, M−q] overlap. Thus one of

the two end-terms of [m−q, M−q] belongs to Hs,q. Since by definition m−q and M−q are numerical

values of Aδ, the proof is complete.

�

PROOF OF ALGORITHM 1. We divide the proof in two parts.

Part 1. The output block output blockj is well defined for every j and the states (sj)j≥1 are bounded.

Set Jq and Hq,s as they are defined in Lemma 3.3. Following the notation given in the proof of

Lemma 3.3, let lq and rq be those of (101).
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With these settings, the definition of output blockj can be rewritten for any j ≥ 1 as

(102) output blockj = max{w ∈ Aδ | π−q(w) ≤ rq +
sj

q2N
}.

Consequently, we may deduce by Lemma 3.3 that

(103) sj ∈ Jq ⇒ output blockj is well defined and it belongs to Hq,sj

and it suffices to prove that for every j ≥ 1, sj is in Jq. If j = 1 then the definition of N implies:

0 ≤ s1 = qδs0 +
1

qδ
πq(input block1) = πq(x1x2 · · · xδ) +

1

qδ
πq(x1x2 · · · xδ)

≤ Mq +
1

qδ
Mq = Mq

qδ

qδ − 1
− Mq

∞

∑
i=2

1

(qδ)i
≤ qδ+2N

qδ − 1
M−q − Mq

∞

∑
i=2

1

(qδ)i

and we deduce s1 ∈ Jq.

Now suppose j > 1 and sj−1 ∈ Jq. Then, by Lemma 3.3, π−q(output blockj−1) ∈ [lq, rq] +
sj−1

q2N .

By applying the definition of sj we have:

sj = qδ
(
sj−1 − q2N · π−q(output blockj−1

)
+

1

qδ
πq(input blockj)(104)

≤ qδ+2N

qδ − 1
M−q − Mq

∞

∑
i=1

1

(qδ)i
+

1

qδ
πq(input blockj)

≤ qδ+2N

qδ − 1
M−q − Mq

∞

∑
i=2

1

(qδ)i
.

Remark that the last term of the inequalities above is equal to right end-term of Jq. Similarly, by

substituting the right end-term of Hq,sj−1
(which contains output blockj−1) in (104) we get:

sj ≥ qδ

[
sj−1 − q2N

(
−m−q

1

qδ − 1
+

sj−1

q2N

)]
+

1

qδ
πq(input blockj)

≥ qδ+2N

qδ − 1
m−q

which is the left end-term of Jq. Then sj ∈ Jq and this completes the proof of the inductive step.

Part 2. The output is a (−q)-representation of πq(x).

First we prove by induction that for every j ≥ 0,

πq(x) = qδ+2N

(
π−q(output block0) +

1

qδ
π−q(output block1) + · · ·+ 1

qδj
π−q(output blockj)

)

+
sj

qδ(j−1)
+

∞

∑
i=δ(j+1)+1

xi

qi
.

(105)

Set j = 0. Since π−q(output block0) = 0 we have:

πq(x) = πq(x1x2 · · · xδ) +
∞

∑
i=δ+1

xi

qi
= qδs0 +

∞

∑
i=δ+1

xi

qi
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and, consequently, (105). Now, assuming the inductive hypothesis for j− 1 ≥ 0 we have:

πq(x) =qδ+2N

(
π−q(output block0) + · · ·+ 1

(qδ)j−1
π−q(output blockj−1)

)

+
qδ+2N

qδj
π−q(output blockj) +

sj−1

qδ(j−2)
− qδ+2N

qδj
π−q(output blockj) +

∞

∑
i=δj+1

xi

qi

=qδ+2N

(
π−q(output block0) + · · ·+ 1

qδj
π−q(output blockj)

)

+
sj−1

qδ(j−2)
− q2N

qδ(j−1)
π−q(output blockj) +

1

qδj
πq(input blockj) +

∞

∑
i=δ(j+1)+1

xi

qi

=qδ+2N

(
π−q(output block0) + · · ·+ 1

(qδ)j
π−q(output blockj)

)

+
sj

qδ(j−1)
+

∞

∑
i=δ(j+1)+1

xi

qi
.

and this completes the proof of (105)

To conclude the proof we recall that: y is defined as the (infinite) concatenation of the blocks

output blockj ; δ is supposed to be even so that qδ = (−q)δ; in the first part of the proof we showed

that sj is bounded. Hence by (105):

πq(x)− q2Nπ−q(y) = lim
j→∞

|πq(x)− qδ+2N
j

∑
i=1

1

qiδ
π−q(output blockj)|

= lim
j→∞

| sj

qδ(j−1)
+

∞

∑
i=δ(j+1)+1

xi

qi
| = 0.

�

8. Overview of original contributions, conclusions and further developments

Symbolic dynamical systems and the alternate order. We studied a symbolic dynamical

system S associated with a given infinite word s satisfying some properties with respect to the

alternate order on infinite words.

We first constructively proved this result.

PROPOSITION. The subshift S = {w = (wi)i∈Z ∈ AZ | ∀n, s � wnwn+1 · · · } is recognizable by

a countable infinite automaton.

Then the following characterization has been showed.

PROPOSITION. Consider the subshift S = {w = (wi)i∈Z ∈ AZ | ∀n, s � wnwn+1 · · · }. Then

(a) S is a sofic subshift if and only if s is eventually periodic;

(b) S is a subshift of finite type if and only if s is purely periodic.

A characterization of sofic (−q)-shifts and (−q)-shifts of finite type. The results above have

been then applied to the (−q)-shift.

THEOREM. The (−q)-shift is a system of finite type if and only if γ−q(− q
q+1 ) is purely periodic.

Entropy of the (−q)-shift. We computed the topological entropy of the (−q)-shift, that turned

out to be equal to the topological entropy of the classical q-shift.

THEOREM 3.10. The topological entropy of the (−q)-shift is equal to log q.
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The Pisot case. Some results about the expansions in base Pisot have been extended to the

negative case.

THEOREM. If q is a Pisot number, then every element of Q(q) ∩ I−q has an eventually periodic (−q)-

expansion.

THEOREM. If q is a Pisot number, then normalization in base −q on any alphabet C, the addition in

base −q and the conversion from base −q to base q are realizable by a finite transducer.

A conversion algorithm from positive to negative base. We finally introduced an on-line

algorithm for the conversion from positive to negative base, with the assumption that the input is

a q-expansion. We have no control on the output: it is not necessarily a (−q)-expansion.

Conclusions and further developments. The results in this chapter mean to confirm that

(−q)-expansions are a natural generalization of the classical q-expansions, the main difference

consisting on the orderings — alternate for the negative bases and lexicographical for the positive

ones. It could be interesting to look for a further generalization of such orders to the complex

base, with the purpose of establishing a relation between the (partial) ordering on the complex

numbers and their representations.

The author also wishes the conversion algorithm in Section 7 to be extended to the case of

q ≥ 2 and this algorithm to be useful to prove that the conversion from positive to negative Pisot

base is realizable by a finite on-line machine.



CHAPTER 4

Generalized Golden Mean for ternary alphabets

Throughout this chapter we investigate the uniqueness of the expansions in real base q > 1

and digits in an arbitrary alphabet A = {a1, . . . , aJ}. For two-letter alphabets A = {a1, a2} the

Golden Mean G := (1 +
√

5)/2 plays a special role: there exist nontrivial unique expansions in

base q if and only if q > G. Our purpose is to determine analogous critical bases for each ternary

alphabet A = {a1, a2, a3}.

1. Introduction

In the fifties, Rényi [Rén57] introduced a new numeration system with non-integer base q

and alphabet with integer digits {0, 1, . . . , ⌊q⌋}. Since then the representations in non-integer base

have been intensively studied both from a measure theoretical and number theoretical point of

view. One of the most interesting features of these numeration systems is the redundancy of the

representation: e.g. Sidorov proved that if 1 < q < 2 almost every number has a continuum of

distinct expansions [Sid03]. Several other works have been dedicated to the study of the unique

expansions and of their topological properties, see [EJK90], [EHJ91], [DK93],[KL98] and [DVK09].

Since the uniqueness of an expansion is preserved by enlarging the base ([DK93]), there exist

some boundary bases separating the possible topological structures of the set of unique expan-

sions, denoted by Uq. For example for bases lower than the Golden Mean, the set Uq contains only

two elements, called trivial expansions ([DK93]); while it has been proved in [GS01] that for bases

complied between the Golden Mean and the Komornik-Loreti constant Uq is a denumerable set,

and for bases larger than the Komornik-Loreti constant Uq has a continuum of elements.

When we consider a general alphabet, i.e. a set in which the distance between consecutive

digits is not necessarily constant, many results extend: e.g. in [Ped05] the unique expansions

have been lexicographically characterized.

The study of expansions with arbitrary alphabets is related to some controllability problems

in robotics. For example in [CP01] the digits of an arbitrary alphabets are considered controls of

an unidimensional discrete control system and the set of representable numbers is interpreted as

the set of reachable points starting from the origin.

Organization of the chapter.

2. Expansions in non-integer base with alphabet with deleted digits

2.1. Basic definitions. Let A be an alphabet and q > 1 a real number. We denote by πq the

map from Aω (the set of finite and infinite words with digits in A) to R defined by πq(z) :=

∑
|z|
i=1

zi

qi . For every z ∈ Aω, πq(z) is called numerical value in base q of z. An expansion of a real

number x is a sequence x = x1x2 · · · ∈ AN whose numerical value in base q is equal to x, i.e.

(106) x = πq(x) =
∞

∑
i=1

xi

qi
.

An expansion x ∈ AN is eventually minimal if x = w(min A)ω for some w ∈ A∗.

58
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A sequence x is called univoque if for every other y ∈ AN, πq(x) 6= πq(y) or, equivalently, if

and only if the expansion of πq(x) is unique. The lexicographically greatest expansion of a real

number x is called greedy expansion of x and it is denoted by γq(x). The lexicographically greatest

not eventually minimal expansion of x is called the quasi-greedy expansion of x and it is denoted

by γ̃q(x). Similarly, we can consider the lexicographically smallest expansion of a real number x,

named the lazy expansion of x and denoted by λq(x). The lexicographically smallest not eventually

maximal expansion of x is called the quasi-lazy expansion of x and it is denoted by λ̃q(x).

REMARK 4.1. We remark some direct consequences of the definition of quasi-greedy, quasi-lazy and

univoque sequences.

1. If the greedy (resp. lazy) expansion of a real number x is not eventually minimal (resp. maximal), then

it coincides with the quasi-greedy (resp. quasi-lazy) expansion of x.

2. If x is a quasi-greedy (resp. quasi-lazy) expansion then max Ax (resp. min Ax) is a quasi-greedy (resp.

quasi-lazy) expansion.

3. If x is respectively quasi-greedy, quasi-lazy or univoque then any suffix of x is respectively quasi-greedy,

quasi-lazy or univoque.

2.2. Representability conditions. The existence of the quasi-greedy and of the quasi-lazy

expansions is put in relation with the gaps of the alphabet, namely the differences between con-

secutive digits, by the following theorem.

THEOREM 4.1 (M. Pedicini [Ped05]). Let A = {a1, . . . , aJ}. Every x ∈
[

min A
q−1 , max A

q−1

]
has a

quasi-greedy and a quasi-lazy expansion in base q > 1 if and only if for every i = 1, . . . , J − 1:

(107) aj+1 − aj ≤
max A − min A

q − 1
.

We conclude this section by stating this classical monotonicity result.

PROPOSITION 4.1. Let x and y be both quasi-greedy expansions or both quasi-lazy expansions in base

q > 1. Then:

x <lex y if and only if πq(x) < πq(y).

2.3. Univoqueness conditions. We recall some univoqueness conditions for general alpha-

bets.

THEOREM 4.2 (M. Pedicini [Ped05]). Let A = {a1, . . . , aJ} and q > 1 such that for every j =

1, . . . , J − 1:

aj+1 − aj ≤
max A − min A

q − 1
.

An expansion x = (xi) is unique in base q if and only if the following conditions are satisfied:

∞

∑
i=1

xn+i − a1

qi
< aj+1 − aj whenever xn = aj < aJ ;(108)

∞

∑
i=1

aJ − xn+i

qi
< aj − aj−1 whenever xn = aj > a1.(109)

Moreover

- x is a quasi-greedy expansion if and only if x is not eventually minimal and it satisfies (108);

- x is a quasi-lazy expansion if and only if x is not eventually maximal and it satisfies (109).

COROLLARY 4.1. Let x ∈ AN be univoque in base q. Then for every t > 0 the sequences:

- x + t := (x1 + t)(x2 + t) · · · ∈ (A + t)ω;
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- tx := (tx1)(tx2) · · · ∈ (tA)ω;

- D(x) := (max A − x1)(max A − x2) · · · ∈ D(A)ω

are univoque in base q.

REMARK 4.2. For every given alphabet A, the sequences (min A)ω and (max A)ω are univoque in

any base. For this reason they are called trivial. From now on, when referring to an univoque sequence, we

implicitely assume that such sequence is not trivial.

Quasi-greedy and quasi-lazy expansions, as well as univoque ones, can also be characterized

by mean of a lexicographic comparison with the quasi-greedy and the quasi-lazy expansions of

the gaps of the alphabet.

THEOREM 4.3 (M. Pedicini [Ped05]). Let A = {a1, . . . , aJ} and q > 1 such that for every j =

1, . . . , J − 1:

aj+1 − aj ≤
max A − min A

q − 1
.

An expansion x = (xi) is unique in base q if and only if the following conditions are satisfied:

(xn+i) <lex γ̃q(aj+1 − aj) whenever xn = aj < aJ ;(110)

(xn+i) >lex λ̃q(aj − aj−1) whenever xn = aj > a1.(111)

Moreover

- x is a quasi-greedy expansion if and only if x is not eventually minimal and it satisfies (110);

- x is a quasi-lazy expansion if and only if x is not eventually maximal and it satisfies (111).

REMARK 4.3. The condition (107) can be rewritten by stressing the bound on the base q, namely:

q ≤ max A − min A

maxj<J{aj+1 − aj}
=: QA.

3. Critical bases

As a consequence of Theorem 4.2 we have the following result.

THEOREM 4.4 (Existence of critical base). For every given set X ⊂ AN there exists a number

1 ≤ qX ≤ QA

such that

q > qX =⇒ every sequence x ∈ X is univoque in base q;

1 < q < qX =⇒ not every sequence x ∈ X is univoque in base q.

PROOF. If X = ∅, then we may choose qX = 1. If X is nonempty, then for each sequence

x ∈ X, each condition of Theorem 4.2 is equivalent to an inequality of the form q > qα. Since we

consider only bases q satisfying (107), we may assume that qα ≤ QA for every α. Then

qX := max{1, sup qα}
has the required properties. �

DEFINITION 4.1 (Critical base). The number qX is called the critical base of X. If X = {x} is a

one-point set, then qx := qX is also called the critical base of the sequence x.

REMARK 4.4. If X is a nonempty finite set of eventually periodic sequences, then the supremum

sup qα in the above proof is actually a maximum. In this case not all sequences x ∈ X are univoque in base

q = qX .
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EXAMPLE 4.1. Consider the ternary alphabet A = {0, 1, 3} and the periodic sequence (xi) = (31)ω.

By the periodicity of (xi) we have for each n either xn = 3 and (xn+i) = (13)ω or xn = 1 and (xn+i) =

(31)ω. According to the preceding remark Theorem 4.2 contains only three conditions on q. For xn = 3 we

have the condition
∞

∑
i=1

3 − xn+i

qi
< 2 ⇐⇒ 2q

q2 − 1
< 2,

while for xn = 1 we have the following two conditions:

∞

∑
i=1

3 − xn+i

qi
< 1 ⇐⇒ 2

q2 − 1
< 1

and
∞

∑
i=1

xn+i

qi
< 2 ⇐⇒ 3

q − 1
− 2

q2 − 1
< 2.

They are equivalent approximatively to the inequalities q > 1.61803, q > 1.73205 and q > 2.18614

respectively, so that qx ≈ 2.18614.

It is well-known that for the alphabet A = {0, 1} there exist nontrivial univoque sequences in

base q if and only if q >
1+

√
5

2 . There exists a “generalized Golden Mean” for every alphabet:

COROLLARY 4.2. There exists a number 1 < GA ≤ QA such that

q > GA =⇒ there exist nontrivial univoque sequences;

1 < q < GA =⇒ there are no nontrivial univoque sequences.

PROOF. If a sequence is univoque in some base, then it is also univoque in every larger base.

If there exists a base satisfying (107) in which there exist nontrivial univoque sequences, then it

follows that the infimum of such bases satisfies the requirements for GA, except perhaps the strict

inequality GA > 1. Otherwise we may choose GA := QA.

To show that GA > 1, we prove that if q > 1 is sufficiently close to one, then the only univoque

sequences are aω
1 and aω

J . We show that it suffices to choose q > 1 so small that the following three

conditions are satisfied:

aJ − a1

q − 1
≥ aj+1 − aj−1, j = 2, . . . , J − 1,(112)

aj − a1

q
+

1

q
· aJ − a1

q − 1
≥ (a2 − a1) +

aj − aj−1

q
, j = 2, . . . , J,(113)

aJ − aj

q
+

1

q
· aJ − a1

q − 1
≥ (aJ − a1) +

aj+1 − aj

q
, j = 1, . . . , J − 1.(114)

The proof consists of three steps. Let (xi) be a univoque sequence in base q.

If xn = aj for some n and 1 < j < J, then the conditions of Theorem 4.2 imply that

∞

∑
i=1

xn+i − a1

qi
< aj+1 − aj and

∞

∑
i=1

aJ − xn+i

qi
< aj − aj−1.

Taking their sum we conclude that

aJ − a1

q − 1
< aj+1 − aj−1,

which contradicts (112). This proves that xn ∈ {a1, aJ} for every n.

If xn = a1 and xn+1 = aj > a1 for some n, then applying Theorem 4.2 we obtain that

∞

∑
i=1

xn+i − a1

qi
< a2 − a1 and

∞

∑
i=1

aJ − xn+i+1

qi
< aj − aj−1.
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Dividing the second inequality by q and adding the result to the first one we obtain that

aj − a1

q
+

1

q
· aJ − a1

q − 1
< (a2 − a1) +

aj − aj−1

q
,

which contradicts (113). This proves that xn = a1 implies xn+1 = a1 for every n.

Finally, if xn = aJ and xn+1 = aj < aJ for some n, then applying Theorem 4.2 we obtain that

∞

∑
i=1

aJ − xn+i

qi
< aJ − aJ−1 and

∞

∑
i=1

xn+i+1 − a1

qi
< aj+1 − aj.

Dividing the second inequality by q and adding the result to the first one we now obtain that

aJ − aj

q
+

1

q
· aJ − a1

q − 1
< (aJ − aJ−1) +

aj+1 − aj

q
,

which contradicts (114). This proves that xn = aJ implies xn+1 = aJ for every n. �

DEFINITION 4.2. The number GA is called the critical base of the alphabet A.

The following invariance properties of critical bases readily follow from the definitions; they

will simplify our proofs.

LEMMA 4.1. The critical base does not change if we replace the alphabet A

- by t + A = {t + aj | j = 1, . . . , m} for some real number t;

- by tA = {taj | j = 1, . . . , m} for some nonzero real number t;

- by the conjugate alphabet A′ := {aJ + a1 − aj | j = 1, . . . , J}.

PROOF. First we note that QA = Qt+A = QtA = QA′ . Fix a base 1 < q ≤ QA and a sequence

(xi) of real numbers. It follows from the definitions that the following properties are equivalent:

- (xi) is an expansion of x for the alphabet A;

- (t + xi) is an expansion of x + t
q−1 for the alphabet t + A;

- (txi) is an expansion of tx for the alphabet tA;

- (aJ + a1 − xi) is an expansion of
a J+a1

q−1 − x for the alphabet A′.

Hence if one of these expansions is unique, then the others are unique as well. �

4. Normal ternary alphabets

The invariance properties stated in Corollary 4.1 are an important tool to simplify the char-

acterization of the critical base in ternary alphabets. The idea is to consider normal alphabets in

the form Am := {0, 1, m}, with m ≥ 2. The restriction to these alphabets does not constitute a

loss of generality. In fact normal alphabets can be obtained from general alphabet by an appropri-

ate composition of translations, scaling and (if necessary) the dual operation, the univoqueness

and the generalized Golden Mean being invariant with respect to these operations. Hereafter we

explicitely show how to normalize an arbitrary alphabet.

DEFINITION 4.3. The normalized form of A, denoted by N(A), is a normal ternary alphabet ob-

tained by A by the composition of a translation, a rescaling and (if necessary) of the dual operation.

Before proving the existence of N(A), we give an example.

EXAMPLE 4.2. Let us consider the alphabet A = {1, 4, 6}. A can be normalized as follows:

A − 1
translation

= {0, 3, 5}

D(A − 1)
dual
= {0, 2, 5}

1

2
D(A − 1)

scaling
= {0, 1, 2.5};
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PROPOSITION 4.2. Every ternary alphabet can be normalized using only translations, scalings and

dual operations.

PROOF. The procedure in Example 4.2 can be generalized as follows. Starting from A =

{a1, a2, a3}, we define:

A1 := A − a1;

A2 :=





A1 if min{a2 − a1, a3 − a2} = a2 − a1

D(A1) otherwise
;

A3 :=
1

min{a2 − a1, a3 − a2}
A2.

Remark that min A3 = min A2 = min A1 = 0; that max A3 ≥ max A2 ≥ 2 and that the middle

digit of A3 is equal to 1. Hence N(A) = A3 = Am with m satisfying:

m = max{ a3 − a1

a2 − a1
,

a3 − a1

a3 − a2}
.

�

We denote by φ : A 7→ N(A) the normalizing map described in the proof of Proposition 4.2.

Fixing an alphabet A, φ can be splitted in the one-to-one application on the digits:

(115) φA(a) =





0 if a = a1 and a2 − a1 ≤ a3 − a2

or a = a3 and a2 − a1 > a3 − a2

1 if a = a2

m = a3−a1
min{a2−a1,a3−a2} if a = a3 and a2 − a1 ≤ a3 − a2

or a = a1 and a2 − a1 > a3 − a2

.

With a little abuse of notation we also denote by φA the normalizing map on infinite words φA :

AN 7→ N(A)ω, defined by φA(x) = φA(x1)φA(x2) · · · .

The interest on φA, and on the normal forms in general, is motivated by the following invari-

ance results, which are a direct consequences of Corollary 4.1 and Proposition 4.2.

PROPOSITION 4.3. Let A be a ternary alphabet and φA be the normalizing map defined above. For

every q > 1, x ∈ AN is univoque in base q if and only if φA(x) is univoque in base q. In particular, any

ternary alphabet and its normal form share the same generalized Golden Mean.

5. Critical bases for ternary alphabets

5.1. Stating of the main result. Our main result on the critical base for normal ternary alpha-

bets is the following.

THEOREM 4.5. There exists a continuous function p : [2, ∞) → R, m 7→ pm satisfying

2 ≤ pm ≤ Pm := 1 +

√
m

m − 1

for all m such that the following properties hold true:

(a) for each m ≥ 2, there exist nontrivial univoque expansions if q > pm and there are no such

expansions if q < pm.

(b) we have pm = 2 if and only if m = 2k for some positive integer k;
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(c) the set C := {m ≥ 2 : pm = Pm} is a Cantor set, i.e., an uncountable closed set having neither

interior nor isolated points; its smallest element is 1 + x ≈ 2.3247 where x is the first Pisot number, i.e.,

the positive root of the equation x3 = x + 1;

(d) each connected component (md, Md) of [2, ∞) \ C has a point µd such that p is strictly decreasing

in [md, µd] and strictly increasing in [µd, Md].

Moreover, we will determine explicitly the function p and the numbers md, Md, µd.

5.2. Driving ideas and organization of the proof. Since the proofs are rather technical let

us explain how we arrived to the above results and to the particular constructions in the proof.

Using a computer program we have found univoque sequences for many particular values of

m for small values q > 2 containing only two different digits. Trying to find an explanation,

we proved that if q is sufficiently close to one, namely if 1 < q ≤ Pm := 1 +
√

m
m−1 , then no

sequence satisfying these conditions (except the trivial sequence 0ω) can contain infinitely many

zero digits (Proposition 4.6). Since by removing a finite number of initial elements a univoque

sequence remains univoque, it follows that if there exists a nontrivial univoque sequence in some

base 1 < q ≤ Pm, then there exists also a nontrivial univoque sequence in this base which only

contains the digits 1 and m. Assuming that there are such sequences in some base 1 < q ≤ Pm, this

allows us to investigate two-digit sequences instead of more complicated three-digit sequences.

In the next stage we made an extensive computer research in order to find such univoque

sequences. For most integer values of m = 2, 3, . . . , 65536 we have found essentially one such se-

quence, namely the periodic sequence (mh11)ω with h1 = [log2 m]. Using the above characteriza-

tion it is easy to see that this sequence can be univoque in a base q only if q > pm := max{p′m, p′′m}
where p′m and p′′m are defined by the equations

πp′m

(
(mh11)ω

)
= m − 1 and πp′′m

(
(mh11)ω

)
=

m

p′′m − 1
− 1,

and one can prove that the condition q > pm is also sufficient.

However, there were seven exceptional integer values: 5, 9, 130, 258, 2051, 4099, 32772, for

which we have found only univoque sequences of a more involved form, e. g. (m21m21m1)ω

for m = 5 and (m31m21)ω for m = 9 (Example 4.5). Each such sequence provided a univoque

sequence in some base 1 < q < Pm also for small perturbations of the integer digit m. In this way

we could also cover many real numbers m ∈ [2, 65536] but not all of them.

In order to find nontrivial univoque sequences in bases 1 < q ≤ Pm for each real number

m ∈ [2, ∞), we have generalized the structure of the above sequences. This led to the notion

of admissible sequences. To any admissible sequence d an interval Id is associated. It turned out

that each admissible sequence d 6= 1ω provides a nontrivial univoque sequence in some base

1 < q ≤ Pm for real digits m belonging to Id. We show the intervals Id provide a disjoint covering

of [2, ∞). The other properties mentioned in Theorem 4.5 were obtained by a closer investigation

of the admissible sequences d and the corresponding intervals Id.

The proof of Theorem 4.5 is organized as follows. In Section 6 we define and we investigate

some lexicographical properties of the admissible sequences. In Section 7 we fix an admissible

sequence d an we define a map m → pm. The map pm depends on d, as well, but the subscript d

is omitted for brevity. The monotonicity properties of pm are then investigated in Proposition 4.4.

In particular we show that for every m the the condition

(116) pm ≤ Pm

holds if and only if m belongs to an interval denoted Id := [md, Md] (Proposition 4.5). For any

given m ∈ Id, the quantity pm is our candidate critical base for the alphabet Am = {0, 1, m}. In
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Section 8 we first explain the role of Pm, by showing that for bases smaller than Pm the univoque

sequences have particular restrictions (Proposition 4.6) . We then apply this result to show that if

m ∈ Id, for every q ≤ pm there are not univoque sequences and for q > pm an appropriate tail of

the associated admissible sequence is univoque (Proposition 4.7). In Proposition 4.8 the intervals

Id are proved to partitionate [2, ∞) so that pm is well defined. Proposition 4.8, together with

Proposition 4.5, also shows that the Id’s with aperiodic d form a cantor set C, whose properties

have been studied in Proposition 4.8 as well.

6. Admissible sequences

This section contains some preliminary technical results.

DEFINITION 4.4. A sequence d = (di) = d1d2 · · · of zeroes and ones is admissible if

(117) 0d2d3 · · · ≤ (dn+i) ≤ d1d2d3 · · ·

for all n = 0, 1, . . . .

EXAMPLE 4.3.

- The trivial sequences 0ω and 1ω are admissible.

- More generally, the sequences (1N0)ω (N = 1, 2, . . .) and (10N)ω (N = 0, 1, . . .) are admissible.

- The sequence (11010)ω is also admissible.

- The (not purely periodic) sequence 10ω is admissible.

In order to clarify the structure of admissible sequences we give an equivalent recursive defi-

nition.

DEFINITION 4.5 (Recursive definition of admissible sequences). Given a sequence h = (hi) of

positive integers, starting with

Sh(0, 1) := 1 and Sh(0, 0) := 0

we define the blocks Sh(j, 1) and Sh(j, 0) for j = 1, 2, . . . by the recursive formulae

Sh(j, 1) := Sh(j − 1, 1)h jSh(j − 1, 0)

and

Sh(j, 0) := Sh(j − 1, 1)h j−1Sh(j − 1, 0).

Observe that Sh(j, 1) and Sh(j, 0) depend only on h1,. . . , hj, so that they can also be defined

for every finite sequence h = (hj) of length ≥ j. We also note that Sh(j, 0) = Sh(j− 1, 0) whenever

hj = 1.

Let us denote by ℓj the length of Sh(j, 1). Setting furthermore ℓ−1 := 0, then the length of

Sh(j, 0) is equal to ℓj − ℓj−1. We observe that ℓj tends to infinity as j → ∞.

If the sequence h = (hj) is given, we often omit the subscript h and we simply write S(j, 1)

and S(j, 0).

Let us mention some properties of these blocks that we use in the sequel. Given two finite

blocks A and B we write for brevity

- A → B or B = · · · A if B ends with A;

- A < B or A · · · < B · · · if Aa1a2 · · · < Bb1b2 · · · lexicographically for any sequences (ai)

and (bi) of zeroes and ones;

- A ≤ B or A · · · ≤ B · · · if A < B or A = B.
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LEMMA 4.2 (Lexicographic properties of recursively defined admissible sequences). For any

given sequence h = (hj) the blocks S(j, 1) and S(j, 0) have the following properties:

(a) We have

S(j, 1) = 1S(1, 0) · · ·S(j, 0) for all j ≥ 0;(118)

S(0, 0) · · · S(j − 1, 0) → S(j, 1) for all j ≥ 1;(119)

S(0, 0) · · · S(j − 1, 0) → S(j, 0) whenever hj ≥ 2;(120)

S(j, 0) < S(j, 1) for all j ≥ 0.(121)

(b) If Aj → S(j, 1) for some nonempty block Aj, then Aj ≤ S(j, 1).

(c) If Bj → S(j, 0) for some nonempty block Bj, then Bj ≤ S(j, 0).

(d) The finite sequence S(j, 1)S(j, 0) is obtained from S(j, 0)S(j, 1) by changing one block 10 to 01.

PROOF.

(a) Proof of (118). For j = 0 we have S(j, 1) = 1 by definition. If j ≥ 1 and the identity is true

for j − 1, then the identity for j follows by using the equality S(j, 1) = S(j − 1, 1)S(j, 0) coming

from the definition of S(j, 1) and S(j − 1, 1).

Proof of (119) and (120). For j = 1 we have S(0, 0) = 0 and S(1, 0) = 1h1−10, so that S(0, 0) →
S(1, 0) → S(1, 1). (The condition h1 ≥ 2 is not needed here.) Proceeding by induction, if (119)

holds for some j ≥ 1, then both hold for j + 1 because

S(0, 0) · · · S(j − 1, 0)S(j, 0) → S(j, 1)S(j, 0) → S(j + 1, 1),

and in case hj+1 ≥ 2 we have also S(j, 1)S(j, 0) → S(j + 1, 0).

Proof of (121). The case j = 0 is obvious because the left side begins with 0 and the right

side begins with 1. If j ≥ 1 and (121) holds for j − 1, then we deduce from the inequality S(j −
1, 0) · · · < S(j − 1, 1) · · · that

S(j, 0) · · · = S(j − 1, 1)h j−1S(j − 1, 0) · · · < S(j − 1, 1)h j · · · .

Since S(j, 1) begins with S(j − 1, 1)h j, this implies (121) for j.

b) We may assume that Aj 6= S(j, 1); this excludes the case j = 0 when we have necessarily

A0 = S(0, 1) = 1. For j = 1 we have S(j, 1) = 1h10 and Aj = 1t0 with some integer 0 ≤ t < h1,

and we conclude by observing that 1t0 · · · < 1h1 · · · .

Now let j ≥ 2 and assume that the result holds for j − 1. Using the equality S(j, 1) = S(j −
1, 1)h jS(j − 1, 0) we distinguish three cases.

If Aj → S(j − 1, 0), then we have the implications

Aj → S(j − 1, 0) =⇒ Aj → S(j − 1, 1) and Aj 6= S(j − 1, 1)

=⇒ Aj · · · < S(j − 1, 1) · · ·
=⇒ Aj · · · < S(j, 1) · · · .

If Aj = Aj−1S(j − 1, 1)tS(j − 1, 0) for some 0 ≤ t < hj, Aj−1 → S(j − 1, 1) and Aj−1 6=
S(j − 1, 1), then

Aj−1 · · · < S(j − 1, 1) · · · =⇒ Aj · · · < S(j − 1, 1) · · ·
=⇒ Aj · · · < S(j, 1) · · · .

Finally, if Aj = S(j − 1, 1)tS(j − 1, 0) for some 0 ≤ t < hj, then using (121) we have

Aj · · · < S(j − 1, 1)t+1 · · ·
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and therefore

Aj · · · < S(j, 1) · · · .

(c) Proceeding by induction, the case j = 0 is obvious because then we have necessarily

B0 = S(0, 0) = 0. Let j ≥ 1 and assume that the property holds for j − 1 instead of j. If hj > 1,

then the case of j follows by applying part b) with hj replaced by hj − 1. If hj = 1, then we have

S(j, 0) = S(j − 1, 0) and applying b) we conclude that

Bj → S(j, 0) =⇒ Bj → S(j − 1, 0) =⇒ Bj ≤ S(j − 1, 0) = S(j, 0).

(d) The assertion is obvious for j = 0 because S(0, 1) = 1 and S(0, 0) = 0. Proceeding by

induction, let j ≥ 1 and assume that the result holds for j − 1. Comparing the expressions

S(j, 1)S(j, 0) = S(j − 1, 1)h jS(j − 1, 0)S(j− 1, 1)h j−1S(j − 1, 0)

and

S(j, 0)S(j, 1) = S(j − 1, 1)h j−1S(j − 1, 0)S(j − 1, 1)h jS(j − 1, 0)

we see that S(j, 0)S(j, 1) is obtained from S(j, 1)S(j, 0) by changing the first block S(j − 1, 1)S(j−
1, 0) to S(j − 1, 0)S(j − 1, 1). �

The following lemma is a partial converse of (119).

LEMMA 4.3 (Other lexicographic properties of recursively defined admissible sequences). If

A is a block of length ℓN−1 in some sequence S(N, a1)S(N, a2) · · · with N ≥ 1 and (ai) ⊂ {0, 1},

then A ≥ S(0, 0) · · ·S(N − 1, 0). Furthermore, we have A = S(0, 0) · · · S(N − 1, 0) if and only if

A → S(N, ai) with some ai = 1.

PROOF. The case N = 1 is obvious because then S(0, 0) = 0 implies that A = 0, and S(1, 1) =

1h10 ends with 0.

Now let N ≥ 2 and assume by induction that the result holds for N − 1. Writing A = BC with

a block B of the same length as S(0, 0) · · ·S(N − 2, 0) and applying the induction hypothesis to B

in the sequence

S(N, a1)S(N, a2) · · · =
(

S(N − 1, 1)hN−1+aiS(N − 1, 0)
)

we obtain that B → S(N− 1, 1) for one of the blocks on the right side and thus B = S(0, 0) · · ·S(N −
2, 0). Then it follows from our assumption that C has the same length as S(N − 1, 0) and C ≤
S(N − 1, 0). Since S(N − 1, 0) < S(N − 1, 1), the block containing B must be followed by a block

S(N − 1, 0). We conclude that C = S(N − 1, 0) and therefore A = BC = S(0, 0) · · ·S(N − 1, 0) and

A → S(N − 1, 1)hN−1+aiS(N − 1, 0) = S(N, ai)

for some ai = 1. �

LEMMA 4.4 (Lexicographic and recursive definitions of admissible sequences are equivalent).

A sequence d = (di) is admissible if and only if one of the following three conditions is satisfied:

- d = 0ω;

- there exists an infinite sequence h = (hi) of positive integers such that d begins with Sh(N, 1)

for every N = 0, 1, . . .;

- d = Sh(N, 1)ω with some nonnegative integer N and a finite sequence h = (h1, . . . , hN) of

positive integers.
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PROOF. It follows from the definition that d1 = 1 for all admissible sequences other than

0ω. In the sequel we consider only admissible sequences beginning with d1 = 1. We omit the

subscript h for brevity.

Let d = (di) be an admissible sequence. Setting d0
i := di we have

d = S(0, d0
1)S(0, d0

2) · · ·
with the admissible sequence (d0

i ).

Proceeding by recurrence, assume that

d = S(j, d
j
1)S(j, d

j
2) · · ·

for some integer j ≥ 0 with an admissible sequence (d
j
i) and positive integers h1,. . . , hj. (We need

no such positive integers for j = 0.)

If (d
j
i) = 1ω, then d = S(j, 1)ω. Otherwise there exists a positive integer hj+1 such that d

begins with S(j, 1)h j+1S(j, 0). Since the sequence (d
j
i) is admissible, we have

0d
j
2d

j
3 . . . ≤ d

j
n+1d

j
n+2 . . . ≤ d

j
1d

j
2 . . .

for all n = 0, 1, . . . . Since the map (ci) 7→ (S(j, ci)) preserves the lexicographic ordering by (121),

it follows that

S(j, 0)S(j, d
j
2)S(j, d

j
3) · · · ≤ S(j, d

j
n+1)S(j, d

j
n+2) · · · ≤ S(j, d

j
1)S(j, d

j
2) · · ·

for all n = 0, 1, . . . . Thanks to the definition of hj+1 we conclude that

S(j, 0)S(j, 1)h j+1−1S(j, 0) · · · ≤ S(j, d
j
n+1)S(j, d

j
n+2) · · · ≤ S(j, 1)h j+1S(j, 0) · · ·

for all n = 0, 1, . . . . This implies that each block S(j, 0) is followed by at least hj+1 − 1 and at most

hj+1 consecutive blocks S(j, 1), so that

d = S(j + 1, d
j+1
1 )S(j + 1, d

j+1
2 ) · · ·

for a suitable sequence (d
j+1
i ) of zeroes and ones. The admissibility of (d

j
i) can then be rewritten

in the form

(122) S(j, 0)S(j + 1, 0)S(j + 1, d
j+1
2 )S(j + 1, d

j+1
3 ) · · ·

≤ S(j, d
j
n+1)S(j, d

j
n+2) · · ·

≤ S(j + 1, 1)S(j + 1, d
j+1
2 )S(j + 1, d

j+1
3 ) · · ·

for n = 0, 1, . . . .

We claim that the sequence (d
j+1
i ) is also admissible. We have d

j+1
1 = 1 by the definition of

hj+1. It remains to show that

S(j + 1, 0)S(j + 1, d
j+1
2 )S(j + 1, d

j+1
3 ) · · ·

≤ S(j + 1, d
j+1
k+1)S(j + 1, d

j+1
k+2)S(j + 1, d

j+1
k+3) · · ·

≤ S(j + 1, 1)S(j + 1, d
j+1
2 )S(j + 1, d

j+1
3 ) · · ·

for k = 0, 1, . . . .

The second inequality is a special case of the second inequality of (122). The first inequality is

obvious for k = 0. For k ≥ 1 it is equivalent to

S(j, 0)S(j + 1, 0)S(j + 1, d
j+1
2 )S(j + 1, d

j+1
3 ) · · ·

≤ S(j, 0)S(j + 1, d
j+1
k+1)S(j + 1, d

j+1
k+2)S(j + 1, d

j+1
k+3) · · ·
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and this is a special case of the first inequality of (122) because S(j + 1, d
j+1
k ) ends with S(j, 0).

It follows from the above construction that (di) has one of the two forms specified in the

statement of the lemma.

Turning to the proof of the converse statement, first we observe that if d begins with S(N, 1)

for some sequence h = (hi) and for some integer N ≥ 1, then

(123) dn · · · dℓN
< d1 · · · dℓN−n+1 for n = 2, . . . , ℓN;

this is just a reformulation of Lemma 4.2 (b).

If d1d2 · · · begins with S(N, 1) for all N, then the second inequality of (117) follows for all

n ≥ 1 by using the relation ℓN → ∞. Moreover, the inequality is strict. For n = 0 we have clearly

equality.

If d = S(N, 1)ω for some N ≥ 0, then d is ℓN-periodical so that the second inequality of (117)

follows from (123) for all n, except if n is a multiple of ℓN ; we get strict inequalities in these cases.

If n is a multiple of ℓN , then we have obviously equality again.

It remains to prove the first inequality of (117). If d = S(N, 1)ω for some N ≥ 0, then we

deduce from Lemma 4.3 that either

(dn+i) > S(0, 0) · · ·S(N − 1, 0)

or

(dn+i) = S(0, 0) · · ·S(N − 1, 0)S(N, 1)ω.

Since

0d2d3 · · · = S(0, 0) · · · S(N − 1, 0)S(N, 0)S(N, 1)ω,

we conclude in both cases the strict inequalities

(dn+i) > 0d2d3 · · · .

If d1d2 · · · begins with S(N, 1) for all N, then

0d2d3 · · · = S(0, 0)S(1, 0) · · ·S(N, 0) · · · ≤ (dn+i)

by Lemma 4.3. �

DEFINITION 4.6. We say that an admissible sequence d is finitely generated if d = 0ω or if d =

Sh(N, 1)ω with some nonnegative integer N and a finite sequence h = (h1, . . . , hN) of positive integers.

Otherwise it is said to be infinitely generated.

We now characterize the sequence d′ satisfying

(124) d′ := min{(dn+i)i≥1|dn = 0; n ≥ 1}
where the minimum is taken with respect to the lexicographic order.

LEMMA 4.5 (Characterization of d′). Let d = (di) 6= 1ω be an admissible sequence.

(a) If (di) = S(N, 1)ω (then N ≥ 1 because d 6= 1ω) and (d′i) = (di+1+ℓN−ℓN−1
), then

(d′n+i) ≥ (d′i) > (d1+i)

whenever d′n = 0. Moreover, we have

(d′i) = S(1, 0) · · ·S(N − 1, 0)S(N, 1)ω(125)

and

(d1+i) = S(1, 0) · · · S(N − 1, 0)S(N, 0)S(N, 1)ω.(126)
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(b) In the other cases the sequence (d′i) := (d1+i) satisfies

(d′n+i) ≥ (d′i)

whenever d′n = 0.

(c) We have d′ = d if and only if d =
(

1k−10
)ω

for some positive integer k, i.e., d = 0ω or d =

S(N, 1)ω with N = 1.

PROOF.

(a) The first inequality follows from Lemma 4.3; the proof also shows that we have equality if

and only if n is a multiple of ℓN .

The relations (118) and (119) of Lemma 4.2 imply (125)–(126) and they imply the second in-

equality because S(N, 0) < S(N, 1).

(b) The case (di) = 0ω is obvious. Otherwise (di) begins with S(N, 1) for all N ≥ 0 and

ℓN → ∞, so that we deduce from the relation (118) of Lemma 4.2 the equality

0d2d3 · · · = S(0, 0)S(1, 0) · · · .

On the other hand, it follows from Lemma 4.3 that for any n ≥ 0 we have

(d′n+i) ≥ S(0, 0) · · ·S(N − 1, 0)S(N, 0)ω

for every N ≥ 0. This implies that

(d′n+i) ≥ 0d2d3 · · ·
for every n ≥ 0. If d′n = 0, then we conclude that

d′nd′n+1d′n+2 · · · ≥ 0d2d3 · · ·

which is equivalent to the required inequality

d′n+1d′n+2 · · · ≥ d2d3 · · · .

(c) It follows from the above proof that d = d′ if and only if d = 0ω or d = S(N, 1)ω for some

integer N ≥ 1 and h such that ℓN−1 = 1. These conditions are equivalent to d =
(

1k−10
)ω

for

some positive integer k. �

EXAMPLE 4.4. By Lemma 4.4 all admissible sequences d 6= 0ω are defined by a finite or infinite

sequence h = (hj). If we add the symbol ∞ to the end of each finite sequence (hj), then the map d 7→ h

is increasing with respect to the lexicographic orders of sequences. It follows that if d = S(N, 1)ω is an

admissible sequence finitely generated with N ≥ 1 (i.e., d 6= 1ω) and h1, . . . , hN ≥ 1, then there exists

a smallest admissible sequence d̃ > d. It is infinitely generated, corresponding to the infinite sequence

h = h1 · · · hN−1h+
N1ω with h+

N := 1 + hN . Observe that d̃ = S(N − 1, 1)d and hence d̃′ = d′.
For d = 0ω, there exists a smallest admissible sequence d̃ > d, too. It is also infinitely generated:

d̃ = 10ω, corresponding to h = (1, 1, . . .), and d̃′ = d′ = 0ω.

LEMMA 4.6. If d = (di) is an admissible sequence finitely generated, then no sequence (ci) of zeroes

and ones satisfies

(127) 0d2d3 · · · < (cn+i) < d1d2d3 · · ·

for all n = 1, 2, . . . .
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PROOF. The case d = 0ω is obvious because then 0d2d3 · · · = d1d2d3 · · · . The case d = 1ω is

obvious, too, because then (ci) cannot have any zero digit by the first condition, while (ci) = 1ω

does not satisfy the second condition. We may therefore assume that d = S(N, 1)ω for some N ≥ 1

and for some h = (hi). Then our assumption takes the form

(128) S(0, 0) · · · S(N − 1, 0)S(N, 0)S(N, 1)ω
< (cn+i) < S(N, 1)ω.

First step: the sequence (ci) cannot end with S(K, 0)ω for any 0 ≤ K ≤ N.

This is true if S(K, 0) = 0 because 0ω ≤ 0d2d3 · · · .

Otherwise we have K ≥ 1 and there exists 1 ≤ M ≤ K such that hM ≥ 2 and hM+1 = · · · hN =

1. Then we have

S(M, 0) = S(M + 1, 0) = · · · = S(K, 0)

and (see (120))

S(0, 0) · · ·S(M − 1, 0) → S(M, 0) = S(K, 0)

Therefore in case (ci) ends with S(K, 0)ω there exists n such that

(cn+i) = S(0, 0) · · ·S(M − 1, 0)S(K, 0)ω

= S(0, 0) · · ·S(K − 1, 0)S(K, 0)ω

≤ S(0, 0) · · ·S(N − 1, 0)S(N, 0)ω

< S(0, 0) · · ·S(N − 1, 0)S(N, 0)S(N, 1)ω,

contradicting the first inequality of (128).

Second step: the sequence (ci) ends with S(N, cN
1 )S(N, cN

2 ) . . . for a suitable sequence (cN
j ) ⊂ {0, 1}.

We have (ci) = S(0, c0
1)S(0, c0

2) . . . with c0
i := ci. Now let 1 ≤ M ≤ N and assume by induction

that (ci) ends with S(M − 1, cM−1
1 )S(M − 1, cM−1

2 ) . . . for a suitable sequence (cM−1
j ) ⊂ {0, 1}.

Since S(N, 1) begins with S(M, 1) = S(M − 1, 1)hMS(M − 1, 0), by (128) each block S(M −
1, cM−1

j ) is followed by at most hM consecutive blocks S(M − 1, 1). On the other hand, since the

first expression in (128) begins with

S(0, 0) · · ·S(M − 2, 0)S(M− 1, 0)S(M − 1, 1)hM−1S(M − 1, 0)

and since (see (119))

S(0, 0) · · · S(M − 2, 0) → S(M − 1, 1)

(for M = 1 the block S(0, 0) · · · S(M − 2, 0) is empty by definition), each block S(M − 1, 1)S(M −
1, 0) in

(
S(M − 1, cM−1

j )
)

is followed by at least hM − 1 consecutive blocks S(M − 1, 1).

Since (ci) cannot end with S(M − 1, 0)ω by the first step, we conclude that (ci) ends with(
S(M, cM

j )
)

for a suitable sequence (cM
j ) ⊂ {0, 1}.

Third step: the sequence (ci) ends with S(N, 1)S(N, 0)S(N, a1)S(N, a2) · · · for a suitable sequence

(aj) ⊂ {0, 1}.

Indeed, in view of the first two steps it suffices to observe that (ci) cannot end with S(N, 1)ω

by the second condition of (128).

Fourth step. Using the relation S(0, 0) · · · S(N − 1, 0) → S(N, 1) (see (119)) we deduce from

the preceding step that (ci) ends with

S(0, 0) · · · S(N − 1, 0)S(N, 0)
(
S(N, aj)

) ≤ S(0, 0) · · ·S(N − 1, 0)S(N, 0)S(N, 1)ω,

contradicting the first condition in (128) again. �
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LEMMA 4.7. If d = (di) 6= 1ω is a finitely generated admissible sequence, then no sequence (ci) of

zeroes and ones satisfies

(129) 0(d′i) < (cn+i) < 1(d′i)

for all n = 1, 2, . . . .

PROOF. If d = 0ω, then d′ = 0ω and our hypothesis takes the form 0ω < (cn+i) < 10ω.

Such a sequence cannot have digits 1 by the second condition, but it cannot be 0ω either by the

first condition. It remains to consider the case where d = S(N, 1)ω for some N ≥ 1 and h =

(h1, . . . , hN). Then by Lemmas 4.2 and 4.5 our hypothesis may be written in the form

(130) S(0, 0) · · · S(N − 1, 0)S(N, 1)ω
< (cn+i) < S(N − 1, 1)S(N, 1)ω.

Using (130) instead of (128), we may repeat the proof of the preceding proposition by keeping

h1,. . . , hN−1 but changing hN to hN + 1. At the end of the third step we obtain that a sequence (ci)

satisfying (130) must end with

S+(N, 1)S+(N, 0)S+(N, a1)S+(N, a2) · · ·

for a suitable sequence (aj) ⊂ {0, 1}, where we use the notations

S+(N, 1) := S(N − 1, 1)hN+1S(N − 1, 0)

and

S+(N, 0) := S(N, 1) = S(N − 1, 1)hN S(N − 1, 0).

Since

S+(N, 1)S+(N, 0)S+(N, a1)S+(N, a2) · · · ≥ S+(N, 1)S+(N, 0)ω

= S(N − 1, 1)S(N, 1)ω,

this contradicts the second inequality of (130). �

REMARK 4.5. It follows by Theorem 1.4 that any admissible sequences d 6= 0ω is of the form 1s where

s is a sturmian word. Hence results like Lemma 4.6 and Lemma 4.7 could be deduced by known results

about sturmian words. We privilege the approach based on recursive admissible sequences because they

yield a good description of experimental data on univoque expansions; see for instance Example 4.5.

7. m-admissible sequences

Throughout this section we fix an admissible sequence d = (di) 6= 1ω and we define the

sequence d′ = (d′i) as in (124). Furthermore, for any given real number m > 1 we denote by

δ = (δi) and δ′ = (δ′i) the sequences obtained from d and d′ by the substitutions 1 → m and

0 → 1. We define the numbers p′m, p′′m > 1 by the equations

∞

∑
i=1

δi

(p′m)i
= m − 1(131)

and

∞

∑
i=1

m − δ′i
(p′′m)i

= 1(132)

and we put pm := max{p′m, p′′m}.
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Introducing the conjugate of δ by the formula δ′i := m − δ′i we may also write (131) and (132)

in the more economical form

πp′m(δ) = m − 1 and πp′′m

(
δ′
)

= 1.

Let us also introduce the number

Pm := 1 +

√
m

m − 1
.

A direct computation shows that Pm > 1 can also be defined by any of the following equivalent

conditions:

(Pm − 1)2 =
m

m − 1
;(133)

m

Pm
+

1

Pm

(
m

Pm − 1
− 1

)
= m − 1;(134)

(m − 1)Pm − m =
m

Pm − 1
− 1;(135)

m

Pm − 1
− (m − 1) =

1

Pm
.(136)

We begin by investigating the dependence of Pm, p′m and p′′m on m.

PROPOSITION 4.4 (Monotonicity properties of pm).

(a) The function m 7→ Pm is continuous and strictly decreasing in (1, ∞).

(b) The function m 7→ p′m − Pm is continuous and strictly decreasing in (1, ∞), and it has a unique

zero md.

(c) The function m 7→ p′′m − Pm is continuous and strictly increasing in (1, ∞), and it has a unique

zero Md.

(d) The function m 7→ p′m − p′′m is continuous and strictly decreasing in (1, ∞), and it has a unique

zero µd.

(e) The function m 7→ pm is continuous in (1, ∞), strictly decreasing in (1, µd] and strictly increasing

in [µd, ∞), so that it has a strict global minimum in µd.

PROOF.

(a) A straightforward computation shows that P is infinitely differentiable in (1, ∞) and

P′(m) =
−1

2(m − 1)
√

m(m − 1)
< 0

for all m > 1.

(b) Since δi = 1 + (m − 1)di, we may rewrite (131) in the form

(137)
1

m − 1
+ (p′m − 1)

∞

∑
i=1

di

(p′m)i
= p′m − 1.

Applying the implicit function theorem it follows that the function m 7→ p′m is Cω.

Differentiating the last identity with respect to m, denoting the derivatives by dots and setting

A := 1 + (p′m − 1)

(
∞

∑
i=1

di

i(p′m)i+1

)
−
(

∞

∑
i=1

di

(p′m)i

)
,

we get

Aṗ′m =
−1

(m − 1)2
.
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Differentiating (133) we obtain that the right side is equal to 2(Pm − 1)Ṗm, so that

Aṗ′m = 2(Pm − 1)Ṗm.

Since Ṗm < 0 and 2(Pm − 1) > 1, it suffices to show that A ∈ (0, 1). Indeed, then we will have

ṗ′m/Ṗm > 1 and therefore ṗ′m < Ṗm(< 0).

The inequality A > 0 follows by using (137):

A = (p′m − 1)

(
∞

∑
i=1

di

i(p′m)i+1

)
+

1

(m − 1)(p′m − 1)
> 0,

while the proof of A < 1 is straightforward:

A ≤ 1 + (p′m − 1)

(
∞

∑
i=1

di

(p′m)i+1

)
−
(

∞

∑
i=1

di

(p′m)i

)

= 1 − 1

p′m

(
∞

∑
i=1

di

(p′m)i

)

< 1.

It remains to show that p′m − Pm changes sign in (1, ∞). It is clear from the definition that

(138) lim
mց1

Pm = ∞ and lim
m→∞

Pm = 2.

Furthermore, using the equality d1 = 1 it follows from (137) that

1

m − 1
≤ p′m − 1 ≤ 1 +

1

m − 1
;

hence

(139) lim
mց1

p′m = ∞ and lim
m→∞

p′m = 1.

We infer from (138)–(139) that limm→∞ p′m − Pm = −1 < 0. The proof is completed by observing

that

p′m − Pm ≥ 1

m − 1
− 1 −

√
m

m − 1
→ ∞ > 0

if m ց 1.

(c) We may rewrite (132) in the form

(140)
∞

∑
i=1

1 − d′i
(p′′m)i

=
1

m − 1
.

Applying the implicit function theorem it follows from (140) that the function m 7→ p′′m is Cω.

The last identity also shows that the function m 7→ p′′m is strictly increasing. Using (a) we

conclude that the function m 7→ p′′m − Pm is strictly increasing, too.

It remains to show that p′′m − Pm changes sign in (1, ∞). Since d 6= 1ω, there exists an index k

such that d′k = 0. Therefore we deduce from (140) the inequalities

1

(p′′m)k
≤ 1

m − 1
≤ 1

p′′m − 1

and hence that

(141) lim
mց1

p′′m = 1 and lim
m→∞

p′′m = ∞.

We conclude from (138) and (141) that

lim
mց1

p′′m − Pm = −∞ < 0 and lim
m→∞

p′′m − Pm = ∞ > 0.
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(d) The proof of (b) and (c) shows that m 7→ p′m is continuous and strictly decreasing and

m 7→ p′′m is continuous and strictly increasing; hence the function m 7→ p′m − p′′m is continuous and

strictly decreasing. It remains to observe that p′m − p′′m changes sign in (1, ∞) because (139) and

(141) imply that

lim
mց1

p′m − p′′m = ∞ > 0 and lim
m→∞

p′m − p′′m = −∞ < 0.

(e) This follows from the definition pm := max{p′m, p′′m} and from the fact that m 7→ p′m is

continuous and strictly decreasing and m 7→ p′′m is continuous and strictly increasing. �

The first part of the following lemma is a variant of a similar result in [EJK90].

LEMMA 4.8. We consider expansions in some base q > 1 on some alphabet {a, b} with a < b.

(a) Let (ci) be an expansion of some number s ≤ b − a. If

cn+1cn+2 · · · ≤ c1c2 · · · whenever cn = a,

then

cn+1

qn+1
+

cn+2

qn+2
+ · · · ≤ s

qn
whenever cn = a.

Moreover, the inequality is strict if the sequence (ci) is infinite and (cn+i) 6= (ci).

(b) Let c = (ci) and d = (di) be two expansions. If q ≥ 2, then

(ci) ≤ (di) =⇒ πq(c) ≤ πq(d).

Moreover, if q > 2, then

(ci) < (di) ⇐⇒ πq(c) < πq(d).

PROOF.

(a) Starting with k0 := n we define by recurrence a sequence of indices k0 < k1 < · · · satisfy-

ing for j = 1, 2, . . . the conditions

ck j−1+i = ci for i = 1, . . . , kj − kj−1 − 1, and ck j
< ck j−k j−1

.

If we obtain an infinite sequence, then we have

∞

∑
i=n+1

ci

qi
=

∞

∑
j=1

k j−k j−1

∑
i=1

ck j−1+i

qk j−1+i

≤
∞

∑
j=1

((k j−k j−1

∑
i=1

ci

qk j−1+i

)
− b − a

qk j

)

≤
∞

∑
j=1

( s

qk j−1
− b − a

qk j

)

≤
∞

∑
j=1

( s

qk j−1
− s

qk j

)

=
s

qn
.
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Otherwise we have (ckN+i) = (ci) after a finite number of steps (we do not exclude the possi-

bility that N = 0), and we may conclude as follows:

∞

∑
i=n+1

ci

qi
=
( N

∑
j=1

k j−k j−1

∑
i=1

ci

qk j−1+i

)
+

∞

∑
i=1

ckN+i

qkN+i

≤
N

∑
j=1

((k j−k j−1

∑
i=1

ci

qk j−1+i

)
− b − a

qk j

)
+

ω

∑
i=1

ci

qkN+i

≤
N

∑
j=1

( s

qk j−1
− b − a

qk j

)
+

s

qkN

≤
N

∑
j=1

( s

qk j−1
− s

qk j

)
+

s

qkN

=
s

qn
.

The last property follows from the above proof.

(b) If c < d, then let n be the first integer for which cn < dn. Then ci = di for i < n,

dn − cn = b − a, and di − ci ≥ a − b for i > n, so that

πq(d)− πq(c) ≥ b − a

qn
−

∞

∑
i=n+1

b − a

qi
=

b − a

qn
− b − a

qn(q − 1)
≥ 0.

Moreover, in case q > 2 the last inequality is strict. �

Now we investigate the mutual positions of md, Md and µd.

PROPOSITION 4.5 (Study of the condition pm ≤ Pm).

(a) If d is finitely generated, then md < µd < Md, and pm < Pm for all md < m < Md. Furthermore,

pm ≥ 2 for all m ∈ (1, ∞) with equality if and only if d =
(

1k−10
)ω

and m = 2k for some positive

integer k.

(b) In the other cases we have md = µd = Md and pm ≥ pµd
= Pµd

> 2 for all m ∈ (1, ∞).

PROOF.

(a)

In view of Lemma 4.4 the first assertion will follow if we show that pm < Pm for m := µd. If

d = 0∞, then d′ = 0∞ and therefore

m − 1 = πp′m (δ) = πp′′m (δ′) =
m

p′′m − 1
− 1 =

m

pm − 1
− 1.

It follows that pm = 2 and therefore Pm = 1 +
√

m/(m − 1) > pm.

In the other cases, using the relations (125)–(126) of Lemma 4.5 we have

m − 1 =
∞

∑
i=1

δi

pi
m

=
m

pm
+

1

pm

∞

∑
i=1

δi+1

pi
m

<
m

pm
+

1

pm

∞

∑
i=1

δ′i
pi

m

=
m

pm
+

1

pm

(
m

pm − 1
− 1

)
.
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In this computation the crucial inequality follows from Lemmas 4.5 and 4.8 (a). Indeed, writing

d = S(N, 1)ω, in view of the relations (125)–(126) of Lemma 4.5 the inequality is equivalent to

πp′m

(
(δℓN−1+i)

)
< πp′m(δ),

and this inequality follows from Lemma 4.8 a) with c = δ, q = p′m and n = ℓN−1. (The hypotheses

of the lemma are satisfied because d is an admissible sequence.)

Using (134) we conclude that pm < Pm indeed.

Furthermore, for m := µd we deduce from the equalities

πpm(δ) = m − 1 and πpm

(
δ′
)

= 1

that
∞

∑
i=1

m − δ′i + δi

pi
m

= m.

It follows that pm ≥ 2 if and only if

∞

∑
i=1

m − δ′i + δi

2i
≥ m

which is equivalent to the inequality

π2(δ′) ≤ π2(δ).

Since δ′ ≤ δ by Lemma 4.5, this is satisfied by a well-known property of diadic expansions.

The proof also shows that we have equality if and only if δ′ = δ. By Lemma 4.5 ((c) this is

equivalent to d =
(

1k−10
)ω

for some positive integer k. In this case we infer from the equations

m

p′m − 1
− m − 1

(p′m)k − 1
= m − 1

and

m

p′′m − 1
− m − 1

(p′′m)k − 1
=

m

p′′m − 1
− 1

that p′m = p′′m = m1/k = 2.

Since by Lemma 4.4 pm has a global strict minimum in m = µd, we have pm > 2 for all other

values of m.

(b) Putting m = µd and repeating the first part of the proof of (a), by Lemma 4.5 now we

have an equality instead of the strict inequality; using (134) we conclude that pm = Pm and hence

pm = p′m = p′′m = Pm. Applying Lemma 4.4 we conclude that md = µd = Md. �

8. Characterization of critical base for ternary alphabets

In this section we determine the generalized Golden Mean for every ternary alphabet A =

{a1, a2, a3}. Putting

m := max

{
a3 − a1

a2 − a1
,

a3 − a1

a3 − a2

}

we will show that

2 ≤ GA ≤ Pm := 1 +

√
m

m − 1
.

Moreover, we will give an exact expression of GA for each m and we will determine the values of

m for which GA = 2 or GA = Pm.
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By Lemma 4.1 we may restrict ourselves without loss of generality to the case of the alphabets

Am = {0, 1, m} with m ≥ 2. Condition (107) takes the form

1 < q ≤ 2m − 1

m − 1
;

under this assumption, that we assume henceforth, the results of the preceding section apply. For

the sequel we fix a real number m ≥ 2 and we consider expansions in bases q > 1 with respect to

the ternary alphabet Am := {0, 1, m} .

One of our main tools will be Theorem 4.2 which now takes the following special form:

LEMMA 4.9. An expansion (xi) is unique in base q for the alphabet Am if and only if the following

conditions are satisfied:

∞

∑
i=1

xn+i

qi
< 1 whenever xn = 0;(142)

∞

∑
i=1

xn+i

qi
< m − 1 whenever xn = 1;(143)

∞

∑
i=1

xn+i

qi
>

m

q − 1
− 1 whenever xn = 1;(144)

∞

∑
i=1

xn+i

qi
>

m

q − 1
− (m − 1) whenever xn = m.(145)

Moreover:

(a) the sequence (xi) is a quasi-greedy expansion of some x in base q if and only if (142) and (143) hold.

Hence, if x = (xi) is a quasi-greedy expansion in base q, then mnx and (xn+i) are also quasi-greedy

expansions in every base ≥ q, for every positive integer n;

(b) the sequence (xi) is a quasi-lazy expansion of some x in base q if and only if (144) and (145) hold. Hence,

if x = (xi) is a quasi-lazy expansion in base q, then 0nx and (xn+i) are also quasi-lazy expansions in

every base ≥ q, for every positive integer n.

COROLLARY 4.3. We have GAm ≥ 2.

PROOF. Let (xi) be a univoque sequence in some base 1 < q ≤ 2. We infer from (143) and

(144) that xn 6= 1 for every n. Since m ≥ q, then we conclude from (142) that each 0 digit is

followed by another 0 digit. Therefore condition (145) implies that each m digit is followed by

another m digit. For otherwise the left-hand side of (145) would be zero, while the right-hand

side is greater than zero. Hence (xi) must be equal to 0ω or mω. �

PROPOSITION 4.6. If (xi) is a nontrivial univoque sequence in some base 1 < q ≤ Pm, then (xi)

contains at most finitely many zero digits.

PROOF. Since a univoque sequence remains univoque in every larger base, too, we may as-

sume that q = Pm. It suffices to prove that (xi) does not contain any block of the form m0 or

10.

(xi) does not contain any block of the form m0. If xn = m and xn+1 = 0 for some n, then we

deduce from Lemma 4.9 that
∞

∑
i=1

xn+i

Pi
m

>
m

Pm − 1
− (m − 1) and

∞

∑
i=1

xn+i+1

Pi
m

< 1.

Hence
m

Pm − 1
− (m − 1) <

∞

∑
i=1

xn+i

Pi
m

=
1

Pm

∞

∑
i=1

xn+i+1

Pi
m

<
1

Pm
,
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contradicting condition (136) on Pm.

(ci) does not contain any block of the form 10. If xn = 1 and xn+1 = 0 for some n, then the

application of Lemma 4.9 shows that

∞

∑
i=1

xn+i

Pi
m

>
m

Pm − 1
− 1 and

∞

∑
i=1

xn+i+1

Pi
m

< 1.

Since m ≥ 2, these inequalities imply those of the preceding step, contradicting again our condi-

tion on Pm. �

Next we select a particular admissible sequence for each given m. Given an admissible se-

quence d 6= 1ω we set

(146) Id :=





[md, Md) if md < Md,

{md} if md = Md.

LEMMA 4.10. Given a real number m ≥ 2 there exists a lexicographically largest admissible sequence

d = (di) such that using the notations of the preceding section we have

(147)
∞

∑
i=1

δi

Pi
m

≤ m − 1.

Furthermore, we have d 6= 1ω and m ∈ Id.

REMARK 4.6. The lemma and its proof remain valid for all m ≥ (1 +
√

5)/2.

PROOF. The sequence d = 0ω always satisfies (147) because using (133) we have

∞

∑
i=1

δi

Pi
m

=
1

Pm − 1
=

√
m − 1

m
≤ m − 1;

the last inequality is equivalent to m ≥ (1 +
√

5)/2. If it is not the only such admissible se-

quence, then applying the monotonicity of the map d 7→ h mentioned in Example 4.4 we obtain

the existence of a lexicographically largest finite or infinite sequence h such that the corresponding

admissible sequence d = (di) satisfies (147).

We have d 6= 1ω because the sequence d = 1ω does not satisfy (147): using (133) again we

have
∞

∑
i=1

δi

Pi
m

=
m

Pm − 1
=
√

(m − 1)m > m − 1.

It remains to prove that m ∈ Id. We distinguish three cases.

(a) If (di) is defined by an infinite sequence (hj), then we already know that pm = p′m = p′′m
and that

∞

∑
i=1

δi

Pi
m

≤ m − 1.

It remains to show the converse inequality

(148)
∞

∑
i=1

δi

Pi
m

≥ m − 1.

It follows from the definition of (δi) that if we denote by (δN
i ) the sequence associated with the

admissible sequence defined by the sequence h := h1, . . . , hN−1, hN + 1, 1, 1, . . ., then

∞

∑
i=1

δN
i

Pi
m

> m − 1.

Since both (di) and (dN
i ) begin with S(N − 1, 1)hN and since the length of this block tends to

infinity, letting N → ω we conclude (148).
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(b) If (di) = S(N, 1)ω for some N ≥ 1, then

(ei) : = S(N − 1, 1)hN+1S(N − 1, 0)
[
S(N − 1, 1)hN S(N − 1, 0)

]ω

= S(N − 1, 1)S(N, 1)ω

does not satisfy (147), so that
∞

∑
i=1

ε i

Pi
m

> m − 1

where (ε i) is obtained from (ei) by the usual substitutions 1 → m and 0 → 1.

Observe that now we have e1e2 · · · = 1d′1d′2 · · · and therefore (using the notations of the first

page of the paper)

m − 1 < πPm(ε) =
m

Pm
+

1

Pm
πPm(δ′).

It follows that

πPm(δ′) > (m − 1)Pm − m =
m

Pm − 1
− 1

which is equivalent to πPm

(
δ′
)

< 1. Since we have πp′′m

(
δ′
)

= 1 by the definition of p′′m, we

conclude that Pm > p′′m.

Finally, since we have πPm(δ) ≤ m − 1 = πp′m(δ) by the definitions of (di) and p′m, we have

also Pm ≥ p′m.

(c) If (di) = 0ω, then we may repeat the proof of (b) with (d′i) = 0ω and (ei) = 10ω. �

EXAMPLE 4.5. Using a computer program we can determine the admissible sequences of Lemma 4.10

for all integer values 2 ≤ m ≤ 216. For all but seven values the corresponding admissible sequence is

infinitely generated with N = 1, more precisely d = (1h10)ω with h1 = [log2 m]. For the exceptional

values m = 5, 9, 130, 258, 2051, 4099, 32772 the corresponding admissible sequence is infinitely generated

with N = 2 and h1 = [log2 m] as shown in the following table:

m d N h

5 (12012010)ω 2 (2,2)

9 (130120)ω 2 (3,1)

130 (170160)ω 2 (7,1)

258 (180170)ω 2 (8,1)

2051 (11101100)ω 2 (11,1)

4099 (11201110)ω 2 (12,1)

32772 (11501140)ω 2 (15,1)

LEMMA 4.11. Given an admissible sequence d 6= 1ω and m ∈ Id let us define the sequences d′, δ, δ′

and the numbers p′m, p′′m, pm as at the beginning of Section 7.

(a) The sequences δ, mδ′ are quasi-greedy in base pm.

(b) The sequences δ′ and (δ1+i) are quasi-lazy in base pm.

PROOF.

(a) Using the admissibility of d and applying Lemma 4.8 (b) with (ci) := δ and q := pm ≥ 2

on the alphabet {1, m} we obtain that

∞

∑
i=1

δn+i

pi
m

≤
∞

∑
i=1

δi

pi
m
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for all n. Since pm ≥ p′m and
∞

∑
i=1

δi

(p′m)i
= m − 1,

it follows that
∞

∑
i=1

δn+i

pi
m

≤ m − 1

for all n. Applying Lemma 4.9 we conclude that δ is a quasi-greedy expansion in base pm. The

same inequalities ensure that mδ′ is also a quasi-greedy expansion in base pm.

(b) Since (δ1+i) = (δ′k+i) for some k ≥ 0, in view of Lemma 4.9 it suffices to show that

∞

∑
i=1

m − δ′n+i

pi
m

≤ 1 whenever δ′n = 1

and

∞

∑
i=1

m − δ′n+i

pi
m

≤ m − 1 whenever δ′n = m.

If δ′n = 1, then applying Lemma 4.5 and Lemma 4.8 (b) with (ci) := δ′ and q := pm ≥ 2 on the

alphabet {1, m} we obtain that
∞

∑
i=1

δ′n+i

pi
m

≥
ω

∑
i=1

δ′i
pi

m

Using the definition of p′′m and the inequality pm ≥ p′′m hence the first property follows:

∞

∑
i=1

m − δ′n+i

pi
m

≤
∞

∑
i=1

m − δ′i
pi

m

≤
∞

∑
i=1

m − δ′i
(p′′m)i

= 1.

If δ′n = m, then let k be the smallest positive integer satisfying δ′n+k = 1. Applying the first

property and the inequalities pm ≥ 2 ≥ m
m−1 the second property follows:

∞

∑
i=1

m − δ′n+i

pi
m

≤ m − 1

pk
m

+
1

pk
m

· 1 =
m

pk
m

≤ m

2k
≤ m

2
≤ m − 1. �

REMARK 4.7. Applying Lemma 4.8 (a) instead of (b) we may obtain the stronger result that δ and

mδ′ are quasi-greedy expansion in every base q ≥ p′m.

LEMMA 4.12. Denoting by γ̃ = (γ̃i) and λ̃ = (λ̃i) the quasi-greedy expansion of m − 1 in base pm

and the quasi-lazy expansion of m
pm−1 − 1 in base pm, respectively, we have either

(δ1+i) ≤ λ̃ and γ̃ = δ

or

δ′ = λ̃ and γ̃ ≤ mδ′.

PROOF. If p′m ≥ p′′m, then both γ̃ and δ are quasi-greedy expansions of m − 1 in base pm = p′m
by Lemma 4.11, so that γ̃ = δ. Since furthermore both δ̂ := (δ1+i) and λ̃ are quasi-lazy expansions

in base pm, in view of Lemma 4.9 it remains to show only that πpm(δ̂) ≤ πpm(λ̃). Since

m − 1 = πpm(δ) =
m

pm
+

1

pm
πpm(δ̂)

and pm ≤ Pm, using (135) we have

πpm(δ̂) = (m − 1)pm − m ≤ m

pm − 1
− 1 = πpm (λ̃).
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If p′′m ≥ p′m, then both λ̃ and δ′ are quasi-lazy expansions of m
pm−1 − 1 in base pm = p′′m by

Lemma 4.11, so that λ̃ = δ′. Furthermore mδ′ and γ̃ are quasi-greedy expansions in base pm.

Since pm ≤ Pm, using (134) we obtain that

πpm(mδ′) =
m

pm
+

1

pm
πpm(δ′)

=
m

pm
+

1

pm

(
m

pm − 1
− 1

)

≥ m − 1

= πpm(γ̃).

Applying Lemma 4.9 we conclude that mδ′ ≥ γ̃. �

Given m ≥ 2 we choose an admissible sequence d 6= 1ω satisfying m ∈ Id (see Lemma 4.10)

and we define pm as at the beginning of Section 7 (see Lemma 4.11). The following lemma proves

Theorem 4.5 (a).

PROPOSITION 4.7.

(a) If q > pm, then δ′ is a nontrivial univoque sequence in base q.

(b) There are no nontrivial univoque sequences in any base 1 < q < pm.

PROOF.

(a) Since the sequence δ is quasi-greedy and the sequence δ′ is quasi-lazy in base pm and since

δ′ is obtained from δ by removing a finite initial block, δ′ is both quasi-greedy and quasi-lazy in

base pm. Hence

∞

∑
i=1

δ′n+i

pi
m

≤ m − 1 whenever δ′n = 1,

∞

∑
i=1

m − δ′n+i

pi
m

≤ 1 whenever δ′n = 1,

∞

∑
i=1

m − δ′n+i

pi
m

≤ m − 1 whenever δ′n = m.

Since q > pm, it follows that

∞

∑
i=1

δ′n+i

qi
< m − 1 whenever δ′n = 1,

∞

∑
i=1

m − δ′n+i

qi
< 1 whenever δ′n = 1,

∞

∑
i=1

m − δ′n+i

qi
< m − 1 whenever δ′n = m.

Applying Lemma 4.9 we conclude that δ′ is a univoque sequence in base q.

(b) Assume first that d is finitely generated and assume on the contrary that there exists a

nontrivial univoque sequence in some base 1 < q ≤ pm. Since a univoque sequence remains

univoque in every greater base and since a univoque sequence remains univoque if we remove

an arbitrary finite initial block, by Lemma 4.6 it follows that there exists a univoque sequence (xi)

in base pm(≤ Pm) that contains only the digits 1 and m.

Assume on the contrary that there exists a nontrivial univoque sequence in some base 1 <

q ≤ pm. Then it is also univoque in base pm. Furthermore, since a univoque sequence in a base

≤ Pm contains at most finitely many zero digits and since a univoque sequence remains univoque
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if we remove an arbitrary finite initial block, the there exists also a univoque sequence (xi) in base

pm that contains only the digits 1 and m.

It follows from the lexicographic characterization of univoque sequences that

xn = 1 =⇒ (λ̃i) < (xn+i) < (γi)

and therefore (using the preceding lemma) that either

xn = 1 =⇒ (δ1+i) < (xn+i) < (δi)

or

xn = 1 =⇒ (δ′i) < (xn+i) < m(δi)

Setting ci = 0 if xi = 1 and ci = 1 if xi = m we obtain a sequence (ci) of zeroes and ones,

satisfying either

(149) (d1+i) < (cn+i) < (di) whenever cn = 0

or

(150) (d′i) < (cn+i) < 1(d′i) whenever cn = 0.

The second inequalities imply that (ci) has infinitely many zero digits. By removing a finite initial

block if necessary we obtain a new sequence (still denoted by (ci)) which begins with c1 = 0 and

which satisfies (149) or (150).

In case of (149) we claim that

(151) 0d2d3 · · · < (cn+i) < (di) for all n ≥ 0.

Indeed, if cn = 1 for some n then there exist m < n ≤ M such that cm = cM+1 = 0 and cm+1 =

· · · = cM = 1. Using (149) it follows that

(cn+i) ≤ (cm+i) < (di)

and

(cn+i) ≥ (cM+i) = 0(cM+1+i) > 0(d1+i) = 0d2d3 · · · .

However, (151) contradicts Lemma 4.6.

In case of (150) we claim that

(152) 0(d′i) < (cn+i) < 1(d′i) for all n ≥ 0.

Indeed, if cn = 1 for some n then choosing again m < n ≤ M such that cm = cM+1 = 0 and

cm+1 = · · · = cM = 1, we have

(cn+i) ≤ (cm+i) < 1(d′i)

and

(cn+i) ≥ (cM+i) = 0(cM+1+i) > 0(d′i).

However, (152) contradicts Lemma 4.7.

Now assume that d is infinitely generated, associated with an infinite sequence h = (h1, h2, . . .),

and that there exists a nontrivial univoque sequence (xi) in some base 1 < q < pm. (Note

that m > 2.) We will then prove the existence of a nontrivial univoque sequence in some base

1 < q′ < pm′ where m′ ∈ Id′ where d′ is finitely generated, contradicting to what we have already

established. (In this part of the proof d′ does not mean the sequence defined in Lemma 4.5.)

We may assume again that xi ≡ 1 + (m − 1)ci for some sequence (ci) ⊂ {0, 1}. By Lemma 4.9

we have

m

q − 1
− 1 < πq ((xn+i)) < m − 1 whenever xn = 1
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and

πq ((xn+i)) >
m

q − 1
− (m − 1) whenever xn = m.

This can be rewritten equivalently in the following form:

πq ((cn+i)) < 1 − 1

(q − 1)(m − 1)
whenever cn = 0;

πq ((1 − cn+i)) <
1

m − 1
whenever cn = 0;

πq ((1 − cn+i)) < 1 whenever cn = 1.

If 2 < m′ < m and q′ are defined by the equation (q′ − 1)(m′ − 1) = (q − 1)(m − 1), then

q′ > q, so that the above three conditions remain valid by changing q to q′ and m to m′. (Observe

that the left sides decrease and the right sides increase.) Applying Lemma 4.9 again we conclude

that the formula x′i := 1 + (m′ − 1)ci defines a nontrivial univoque sequence in base q′ for the

alphabet {0, 1, m′}. To end the proof it remains to show that we can choose m′ such that 1 < q′ <

pm′ and m′ ∈ Id′ for some d′ is finitely generated. Thanks to the continuity of the maps m′ 7→ q′

and m′ 7→ pm′ the first condition is satisfied for all m′ sufficiently close to m.

If h = (h1, h2, . . .) contains infinitely many elements hj ≥ 2, then we may choose d′ associated

with the finite sequence h = (h1, h2, . . . , hj−1, hj − 1) for a sufficiently large index j such that hj ≥ 2,

and an arbitrary element m′ ∈ Id′ . If h = (h1, h2, . . .) has a last element hj ≥ 2, then m is the right

endpoint of the interval Id′ for d′ associated with the finite sequence h = (h1, h2, . . . , hj−1, hj − 1)

(see Example 4.4), and we may choose m′ ∈ Id′ sufficiently close to m. The only remaining case

h = (1, 1, . . .) is similar: m is the right endpoint of the interval Id′ for d′ = 0ω, and we may choose

m′ ∈ Id′ sufficiently close to m. (See Example 4.4 again.) �

The following lemma completes the proof of Theorem 4.5.

PROPOSITION 4.8 (Proof of Theorem 4.5 (c)).

(a) If d < d̃ < 1ω are admissible sequences, then Md ≤ md̃ with equality if and only if d = S(N, 1)ω

is finitely generated and d̃ = S(N − 1, 1)S(N, 1)ω.

(b) The sets Id, where d runs over all admissible sequences d 6= 1ω, form a partition of the interval

[ 1+
√

5
2 , ∞).

(c) The set C of numbers m >
1+

√
5

2 satisfying pm = Pm is a Cantor set, i.e., a nonempty closed set

having neither interior, nor isolated points. Its smallest element is 1 + x ≈ 2.3247 where x is the first Pisot

number, i.e., the positive root of the equation x3 = x + 1.

PROOF.

(a) If d and d̃ are infinitely generated, then md = Md and md̃ = Md̃, so that it suffices to prove

the inequality Md < Md̃. For this, it is sufficient to show that p′′d,m > p′′
d̃,m

for each m ∈ (1, ∞)

where p′′d,m and p′′
d̃,m

denote the expressions p′′m of Section 7 for the admissible sequences d and

d̃, respectively. Indeed, then we can conclude that p′′d,Md̃
> p′′

d̃,Md̃
= PMd̃

and therefore, since the

function m 7→ p′′d,m − Pm is strictly increasing Lemma 4.4, Md < Md̃.

Assuming on the contrary that p′′d,m ≤ p′′
d̃,m

for some m, in base q := p′′
d̃,m

we have

πq(m − δ̃′) = 1 = πp′′d,m
(m − δ′) ≥ πq(m − δ′) =⇒ πq(δ′) ≥ πq(δ̃′)

Since d and d̃ are infinitely generated, we have δ = mδ′ and δ̃ = mδ̃′ by Lemma 4.5, so that the

last inequality is equivalent to πq(δ) ≥ πq(δ̃).
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Since quasi-greedy expansions remain quasi-greedy in larger bases, it follows from Lemma

4.11 that both δ and δ̃ are quasi-greedy expansions in base q. Therefore we deduce from the last

inequality that δ ≥ δ̃, contradicting our assumption.

If d = S(N, 1)ω is finitely generated and d̃ infinitely generated, then we recall from Example

4.4 that d̂ = S(N − 1, 1)S(N, 1)ω is the smallest admissible sequence satisfying d̂ > d, and that

md < Md = md̂ = Md̂. Since d̂ is infinitely generated, we conclude that Md = Md̂ < Md̃ = md̃.

The case of d = 0ω is similar with d̂ = 10ω.

If d is arbitrary and d̃ finitely generated, then d̃ is associated with a finite sequence (h1, . . . , hN)

of length N ≥ 1. If k is a sufficiently large positive integer, then the admissible sequence dk

associated with the infinite sequence (h1, . . . , hN, k, 1, 1, . . .) satisfies d < dk < d̃, so that Md ≤ mdk .

Letting k → ∞ we conclude that Md ≤ md̃. Indeed, for any fixed m < md̃ we have p′
d̃,m

− Pm > 0

by Lemma 4.4 (b) and therefore πPm(δ̃) > m − 1. Since the first k digits of δ̃ and δk coincide, for

k → ∞ we have

πPm(δk) =
k

∑
i=1

δ̃i

Pi
m

+
∞

∑
i=k+1

δk
i

Pi
m

=
k

∑
i=1

δ̃i

Pi
m

+ O

(
1

Pk
m

)
→ πPm(δ̃),

so that πPm(δk) > m − 1 for if k is sufficiently large. Hence p′
dk,m

> Pm and therefore m < mdk by

Lemma 4.4 (b). Similarly, for any fixed m > md̃ we have m > mdk for all sufficiently large k.

(b) The sets Id are disjoint by (a) and they cover the interval
[

1+
√

5
2 , ∞

)
by Lemma 4.10. In

view of (a) the proof will be completed if we show that for the smallest admissible sequence we

have

(153) I0ω =

[
1 +

√
5

2
, 1 + P1

)

where x > 1 is the first Pisot number.

The values md and Md are the solutions of the equations

πPm(δ) = m − 1 and πPm(δ′) =
m

Pm − 1
− 1.

Now we have δ = δ′ = 1ω, so that our equations take the form

1

Pm − 1
= m − 1

and

1

Pm − 1
=

m

Pm − 1
− 1.

Using (133) we obtain that they are equivalent to m = (1 +
√

5)/2 and m = 1 + P1, respectively.

(c) If we denote by D1 and D2 the set of admissible sequences d 6= 1ω finitely and infinitely

generated, respectively, then

C = [2, ∞) \ ∪d∈D1
(md, Md)

so that C is a closed set. The relation (153) shows that its smallest element is 1 + P1. In order to

prove that it is a Cantor set, it suffices to show that

- the intervals [md, Md] (d ∈ D1) are disjoint;

- for each m ∈ C there exist two sequences (aN) ⊂ [2, ∞) \ C and (bN) ⊂ C \ {m}, both

converging to m.
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The first property follows from (a). For the proof of the second property let us consider the

infinite sequence h = (hj) of positive integers defining the admissible sequence d for which md =

m, and set dN := Sh(N, 1)ω, N = 1, 2, . . . . This is a decreasing sequence of admissible sequences,

converging pointwise to d. Using (a) we conclude that both (mdN
) and (MdN

) converge to md =

Md. Since mdN
∈ D1 and MdN

∈ D2 for every N, the proof is complete. �

9. Overview of original contributions, conclusions and further developments

Critical bases. The notion of critical base has first been referred to a set of sequences:

THEOREM (Existence of critical base). For every given set X ⊂ AN there exists a number

1 ≤ qX ≤ QA

such that

q > qX =⇒ every sequence x ∈ X is univoque in base q;

1 < q < qX =⇒ not every sequence x ∈ X is univoque in base q.

Then we introduced GA, namely the critical base of the alphabet A, whose existence has been

proved in the following:

COROLLARY. There exists a number 1 < GA ≤ QA such that

q > GA =⇒ there exist nontrivial univoque sequences;

1 < q < GA =⇒ there are no nontrivial univoque sequences.

Normal ternary alphabets. The problem of characterizing the critical base of ternary alpha-

bets is simplified by the following results.

PROPOSITION. Every ternary alphabet can be normalized using only translations, scalings and dual

operations.

PROPOSITION. Let A be a ternary alphabet and φA be the normalizing map defined above. For every

q > 1, x ∈ AN is univoque in base q if and only if φA(x) is univoque in base q. In particular, any ternary

alphabet and its normal form share the same generalized Golden Mean.

Critical bases for ternary alphabets. We proved that the critical base of alphabets of the form

A = {a1, a2, a3} with

m := max

{
a3 − a1

a2 − a1
,

a3 − a1

a3 − a2

}

is the value pm = GAm = G{0,1,m} whose properties are stated in the following result.

THEOREM 4.6. There exists a continuous function p : [2, ∞) → R, m 7→ pm satisfying

2 ≤ pm ≤ Pm := 1 +

√
m

m − 1

for all m such that the following properties hold true:

(a) for each m ≥ 2, there exist nontrivial univoque expansions if q > pm and there are no such

expansions if q < pm.

(b) we have pm = 2 if and only if m = 2k for some positive integer k;

(c) the set C := {m ≥ 2 : pm = Pm} is a Cantor set, i.e., an uncountable closed set having neither

interior nor isolated points; its smallest element is 1 + x ≈ 2.3247 where x is the first Pisot number, i.e.,

the positive root of the equation x3 = x + 1;
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(d) each connected component (md, Md) of [2, ∞) \ C has a point µd such that p is strictly decreasing

in [md, µd] and strictly increasing in [µd, Md].

Admissible sequences. The proof of Theorem 4.6 needs some auxiliary notions to be intro-

duced. In fact the definition of pm lies on the admissible sequences.

DEFINITION. A sequence d = (di) = d1d2 · · · of zeroes and ones is admissible if

0d2d3 · · · ≤ (dn+i) ≤ d1d2d3 · · ·
for all n = 0, 1, . . . .

For any admissible sequence d we denote d′ a particular suffix of d, satisfying:

d′ = min{(dn+i)i≥1|dn = 0; n ≥ 1}
with respect to the lexicographic order. A recursive characterization of the admissible sequences

allows us to prove the following results.

PROPOSITION. If d = (di) is a finitely generated admissible sequence, then no sequence (ci) of zeroes

and ones satisfies

0d2d3 · · · < (cn+i) < d1d2d3 · · ·
for all n = 1, 2, . . . .

PROPOSITION. If d = (di) 6= 1ω is a finitely generated admissible sequence, then no sequence (ci) of

zeroes and ones satisfies

0(d′i) < (cn+i) < 1(d′i)

for all n = 1, 2, . . . .

REMARK. The Propositions above are used to exclude the existence of univoque sequences for bases

smaller than pm.

m-admissible sequences. We specialize any fixed binary admissible sequence d to the corre-

sponding m-admissible sequence δ by replacing any occurrence of 0 in d with 1 and any occurrence

of 1 with m. We then define p′m and p′′m as the positive solutions of the following equations:

πp′m(δ) = m − 1 πp′′m

(
δ′
)

= 1.

and pm := max{p′m, p′′m}. By studying the monotonicity properties of p′m, p′′m, pm and of Pm :=

1 +
√

m
m−1 we may deduce the existence of some values md and Md satisfying:

p′md
= Pmd

and p′′Md
= PMd

Moreover we also proved that there exists a value µd such that pm is decreasing and coinciding

with p′m if and only if m ≤ µd and pm is increasing and coinciding with p′′m if and only if m ≥ µd.

We established the mutual positions of md,Md and µd so to get

- Parts (c) and (d) of Theorem 4.6;

- a relation between finitely generated admissible sequences and the condition pm < Pm.

PROPOSITION.

(a) If d is finitely generated, then md < µd < Md, and pm < Pm for all md < m < Md. Furthermore,

pm ≥ 2 for all m ∈ (1, ∞) with equality if and only if d =
(

1k−10
)ω

and m = 2k for some positive

integer k.

(b) In the other cases we have md = µd = Md and pm ≥ pµd
= Pµd

> 2 for all m ∈ (1, ∞).
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Characterization of critical bases. We previously defined pm starting from an arbitrary ad-

missible sequence. We now assume that pm ≤ Pm, namely m ∈ [md, Md] for an appropriate

admissible sequence d. The existence of such a sequence for any given m is the statement of the

following result.

LEMMA. Given a real number m ≥ 2 there exists a lexicographically largest admissible sequence

d = (di) such that
∞

∑
i=1

δi

Pi
m

≤ m − 1.

Furthermore, we have d 6= 1ω and m ∈ Id.

Once we univoquely determined the admissible sequence d, we proved that if d is periodic

then pm ≤ Pm is the critical base of any alphabet A = {a1, a2, a3} whose ratios between the gaps

satisfy max
{

a3−a1
a2−a1

, a3−a1
a3−a2

}
= m. To this end we first proved this interesting property of bases

smaller than Pm:

PROPOSITION. If (xi) is a nontrivial univoque sequence in some base 1 < q ≤ Pm, then (xi) contains

at most finitely many zero digits.

In the next stage we constructively proved Part (a) of Theorem 4.6, by showing that an ap-

propriate suffix δ′ of the (periodic) m-admissible sequence associated to pm is univoque for every

base larger than pm.

PROPOSITION. Suppose that m ∈ Id with d periodic.

(a) If q > pm, then δ′ is a nontrivial univoque sequence in base q.

(b) There are no nontrivial univoque sequences in any base 1 < q < pm.

We finally completed the proof of Theorem 4.6 and we showed some additional properties on

the periodicity of univoque sequences:

PROPOSITION.

(a) If d < d̃ < 1ω are admissible sequences, then Md ≤ md̃ with equality if and only if d = S(N, 1)ω

is infinitely generated and d̃ = S(N − 1, 1)S(N, 1)ω.

(b) The sets Id, where d runs over all admissible sequences d 6= 1ω, form a partition of the interval

[ 1+
√

5
2 , ∞).

(c) The set C of numbers m >
1+

√
5

2 satisfying pm = Pm is a Cantor set, i.e., a nonempty closed set

having neither interior, nor isolated points. Its smallest element is 1 + x ≈ 2.3247 where x is the first Pisot

number, i.e., the positive root of the equation x3 = x + 1.

Conclusions and further developments. In this chapter we first considered arbitrary alpha-

bets and we proved the existence of a sharp critical value between the non-existence and the exis-

tence of univoque sequences. This notion extends the analogous classical property of the Golden

Mean for binary alphabets. The characterization in the case of ternary alphabets revealed the crit-

ical base to be an algebraic number like as the Golden Mean for (at least) almost every possible

ratio between the gaps, m. Our construction of admissible sequences incidentally yields a new

characterization of sequences of the form 1s where s is a sturmian word (with alphabet {0, 1}).

The author wishes the constructions in this chapter to be useful for a generalization to alpha-

bets with more than three digits.

We finally remark that the construction of some univoque sequences has been here functional

to the characterization of the critical base for ternary alphabets. We deeper investigate these se-

quences in Chapter 5.



CHAPTER 5

Univoque sequences for ternary alphabets

The aim of this chapter is to show that the unique expansions presented in Chapter 4 are the

only ones for all the sufficiently small bases. This, beside the explicit characterization of a large

class of unique expansions, will imply that Uq is a denumerable, regular set for every q smaller

than an explicitely determined value depending on the alphabet.

1. Introduction

For an overview on uniqueness and arbitrary alphabets we refer to the introduction of Chap-

ter 4.

Organization of the chapter. Section 2 is dedicated to some recalls on the expansions with

digits in the so-called normal alphabets, namely the ternary alphabets in the form Am = {0, 1, m}.

In Section 3 a connection between the theory of sturmian words and the main result of Chapter

4, i.e. the characterization of the generalized Golden Mean for ternary alphabets, is established.

In Section 4 we show some characterizing properties of unique expansions. Section 5 contains a

lexicographical result on sturmian words which is applied in Section 6, where our main result on

the characterization of unique expansions is proved.

2. Some recalls on normal ternary alphabets

2.1. Univoqueness conditions for normal ternary alphabets. In Section 2.3 we recalled the

Pedicini’s characterization for quasi-greedy, quasi-lazy and unique expansions. We then adapted

the non-lexicographic conditions to the case of a normal ternary alphabet Am = {0, 1, m} in

Lemma 4.9. Since troughout this chapter we need both lexicographical and “value-oriented” char-

acterization of univoque sequences, we propose an integrated and adapted version of Theorem

4.2 and Theorem 4.3.

REMARK 5.1. Recall the notation for the shift: σnx = xn+1xn+2 · · · .

PROPOSITION 5.1. Fix a base q and consider the alphabet Am, with m ≥ 2 and such that m − 1 ≤
m

q−1 . Let x be an expansion in base q and alphabet Am and for every n ∈ N, consider the conditions:

whenever xn = 0: πq(σnx) < 1 or σnx <lex γ̃q(1)(154)

whenever xn = 1: πq(σnx) < m − 1 or σnx <lex γ̃q(m − 1)(155)

whenever xn = 1 : πq(σnx) >
m

q − 1
− 1 or σnx >lex λ̃q(

m

q − 1
− 1)(156)

whenever xn = m : πq(σnx) >
m

q − 1
− (m − 1) or σnx >lex λ̃q(

m

q − 1
− (m − 1))(157)

Then x is univoque if and only if (154), (155),(156) and (157) are satisfied. Moreover

89
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(a) x is quasi-greedy if and only if

whenever xn = 0: σnx ≤lex γ̃q(1)(158)

whenever xn = 1: σnx ≤lex γ̃q(m − 1)(159)

(b) x is quasi-lazy if and only

whenever xn = 1: σnx ≥lex λ̃q(
m

q − 1
− 1)(160)

whenever xn = m: σnx ≥lex λ̃q(
m

q − 1
− (m − 1))(161)

As a consequence of the above proposition, we prove a technical result on quasi-greedy and

quasi-lazy expansions of the gaps of the alphabet.

LEMMA 5.1. Fix a base q and consider the alphabet Am, with m ≥ 2 and such that m − 1 ≤ m
q−1 :

- if (γ̃i)i≥1 := γ̃q(m − 1) >lex (w1)ω for some w ∈ A∗
m, then γ̃1 · · · γ̃|w|+1 >lex w1;

- if (λ̃i)i≥1 := λ̃q(
m

q−1 − 1) <lex (w1)ω for some w ∈ A∗
m, then λ̃1 · · · λ̃|w|+1 <lex w1.

PROOF. Suppose γ̃q(m − 1) >lex (w1)ω for some w ∈ A∗
m. It follows by condition (155) of

Proposition 5.1 that γ̃n = 1 implies σnγ̃q(m − 1) ≤lex γ̃q(m − 1).

In order to find a contradiction, suppose that γ̃1 · · · γ̃|w|+1 = w1. Then

(w1)ω = σ|w|+1((w1)ω) <lex σ|w|+1γ̃q(m − 1) <lex γ̃q(m − 1) = w1 · · ·
and, consequenlty, σ|w|+1γ̃ = w1 · · · . By induction, γ̃ = (w1)ω and this is the required contradic-

tion. The case λ̃q(
m

q−1 − 1) <lex (w1)ω is similar. �

2.2. Critical bases of ternary alphabets. In previous chapter we characterized the critical

base GAm by mean of the so called m-admissible sequences, namely sequences δ = (δi) ∈ {1, m}N

satisfying

(162) 1δ2δ3 · · · ≤ (δn+i) ≤ δ1δ2 · · ·
for every n = 0, 1, . . . . At the beginning of Section 7 we also denoted δ′ := min{σnδ|δn = 1; n ≥
1}.

The relation between m-admissible sequences and critical bases becomes evident in the fol-

lowing restatement of Theorem 4.5, Lemma 4.5 and Lemma 4.11.

THEOREM 5.1. For every m ≥ 2 there exists an unique m-admissible sequence δm ∈ {1, m}ω such

that:

(163) if p′m > 1 and πp′m(δm) = m − 1, then p′m ≤ 1 +

√
m

m − 1
;

and

(164) if p′′m > 1 and πp′′m (δ′m) =
m

p′′m − 1
− 1, then p′′m ≤ 1 +

√
m

m − 1
.

Moreover the critical base GAm has the following properties:

(a) GAm = max{p′m, p′′m};

(b) GAm ∈ [2, 1 +
√

m
m−1 ];

(c) GAm = 1 +
√

m
m−1 if and only if δm is not purely periodic;

(d) for every q > GAm the sequence δm is univoque in base q.
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REMARK 5.2. The bases p′m and p′′m are well defined by (163) and (164) because the function πq is

monotone with respect to q’s greater than 1. In particular this implies that for every x ∈ AN
m and for every

x ∈ R, the equation πq(x) = x admits at most one solution.

3. A relation between m-admissible and sturmian sequences

As a consequence of Theorem 5.1 we have the following result.

THEOREM 5.2. Let m ≥ 2 be such that GAm < 1 +
√

m
m−1 and consider the (purely periodic)

associated m-admissible sequence δm = δ1δ2 · · · . Then the sequence sm := δ2δ3 · · · is a sturmian sequence

and it is uniquely determined by the conditions:

(165) if p′m > 1 and πp′m(max sm) = m − 1, then p′m ≤ 1 +

√
m

m − 1
;

and

(166) if p′′m > 1 and πp′′m (min sm) = q(
m

p′′m − 1
− 1)− 1, then p′′m ≤ 1 +

√
m

m − 1
.

Moreover for every q > GAm the sequence sm is univoque in base q.

PROOF. The definition of m-admissible sequences given in (162), together with Theorem 1.4,

implies that sm := δ2δ3 · · · is a sturmian sequence. The condition GAm < Pm and Theorem

5.1 imply that sm is a purely periodic sturmian sequence and, in particular, max sm = δm and

min sm = 1δ′m. Hence we may deduce that sm is the unique sturmian sequence satisfying (165)

and (166) by the equivalent fact that δm is uniquely determined by (163) and (164). The univoque-

ness of sm for bases larger than GAm straightforward follows by Theorem 5.1 as well. �

REMARK 5.3. Theorem 1.4 also implies that there exists a finite word w satisfying sm = (wm1)ω.

DEFINITION 5.1. The sequence sm in Theorem 5.2 is defined as the sturmian sequence associated

to Am.

EXAMPLE 5.1. Consider A3 = {0, 1, 3} and the sturmian sequence s = (13)∞. By solving the

equations:

πp′((31)∞) = 2

πp′′((13)∞) =
3

p′′ − 1
− 1.

which are respectively equivalent to:
(

3

p′
+

1

p′2

)
p′2

p′2 − 1
= 2

(
1

p′′
+

3

p′′2

)
p′′2

p′′2 − 1
=

3

p′′ − 1
− 1,

we get p′3 ≃ 2.18614 and p′′3 ≃ 1.73205. Since p′3, p′′3 < 1 +
√

3
2 , s3 = s = (13)ω. Hence it follows by

Theorem 5.1 that GA3
= p′3 ≃ 2.18614 and that (13)ω and (31)ω are univoque in every base greater than

GA3
.

EXAMPLE 5.2. The sturmian sequences of the alphabets {0, 1, 2}, {0, 1, 4} and {0, 1, 8} are respec-

tively:

s2 = (1)ω s4 = (41)ω s8 = (881)ω

and GA2
= GA4

= GA8
= 2.
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4. Univoque sequences in small base

In this section we investigate more closely the properties of expansions in base smaller than

Pm := 1 +
√

m
m−1 . In fact, as we show further, these properties allow a complete and almost

explicit characterization of univoque sequences in small base.

REMARK 5.4. As a first property of Pm we recall that in Lemma 4.6 we proved that if x is an univoque

sequence in base q ≤ Pm and if x1 6= 0 then x ∈ {1, m}ω.

LEMMA 5.2. Let q ≤ Pm.

If x = 1x′ is univoque in base q, then mx′ >lex γ̃q(1).

If x = 1mx′′ is univoque in base q, then x′′ <lex λ̃q(
m

q−1 − 1).

PROOF. Since x is supposed to be univoque, then it follows by conditions (155) and (156) in

Proposition 5.1 that

πq(x′) >
m

q − 1
− 1 and πq(mx′′) < 1.

Since q ≤ 1 +
√

m
m−1 , the inequalities above respectively imply:

(167) πq(mx′) =
m

q
+

1

q
πq(x′) > 1 and πq(x′′) = qπq(mx′′) − m <

m

q − 1
− 1.

The sequences x′ and x′′ are quasi-greedy and quasi-lazy because they are suffixes of an univoque

sequence, which is always quasi-greedy and quasi-lazy. In view of Remark 4.1, we have that mx′ is

quasi-greedy, too. Thus, by Proposition 4.1, the conditions mx′ >lex γ̃q(1) and x′′ <lex λ̃q(
m

q−1 − 1)

are equivalent to (167) and the proof is complete. �

We now characterize the univoque expansions in “small“ base by mean of a lexicographic

comparison with the sturmian associated to the alphabet sm = (wm1)ω (for the last equality see

Remark 5.3).

PROPOSITION 5.2. Let m ≥ 2 be such that GAm < 1 +
√

m
m−1 . Let sm = (wm1)∞ be the sturmian

word associated to the alphabet Am and let x be a sequence with x1 = 1. Then x is univoque in base

q ∈ (GAm , Pm] if and only if for every n ≥ 0:

(168) min sm ≤ σnx ≤ max sm.

PROOF. First of all we apply the last part of Theorem 1.4 to sm and we denote w the finite

word satisfying max sm = (mw1)∞ and min sm = (1wm)∞. We then divide the proof in several

parts.

Part 1. If x = 1x′ is univoque in base q, then mx′ >lex γ̃q(m − 1).

Since x is supposed to be univoque, then it follows by the condition (156) of Proposition 5.1 that:

πq(x′) > m
q−1 − 1. This, together with q ≤ 1 +

√
m

m−1 ,implies:

πq(mx′) =
m

q
+

1

q
πq(x′) > m − 1.

As x′ is univoque, it is in particular quasi-greedy as well as mx′ — see Remark 4.1. Hence, by

the monotonicity of the quasi-greedy expansions, the inequality above implies mx′ >lex γ̃q(m −
1).

Part 2. If x = 1mx′′ is univoque in base q, then x′′ <lex λ̃q(
m

q−1 − 1).
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Since x is supposed to be univoque, then it follows by the condition (155) of Proposition 5.1 that:

πq(mx′′) < m − 1. This, together with q ≤ 1 +
√

m
m−1 , implies:

πq(x′′) = q(πq(mx′′) − m

q
) <

m

q − 1
− 1.

As x′′ is univoque, it is in particular quasi-lazy. By the monotonicity of the quasi-lazy expan-

sions, we may conclude x′′ <lex λ̃q(
m

q−1 − 1).

Part 4. Approximation of the boundary sequences: γ̃q(m− 1) = mwm0 · · · and λ̃q(
m

q−1 − 1) = wm0 · · · .

Since q > GAm then it follows by Theorem 5.1 that max sm = (mw1)∞ and min sm = (1wm)∞ are

both univoque in base q. Hence, by Theorem 4.9 we have:

(169) (mw1)∞
< γ̃q(m − 1) and λ̃q(

m

q − 1
− 1) < (wm1)∞.

Since q ≤ Pm, it follows by (169) and by Lemma 5.2 that:

(170) (mw1)∞
< γ̃q(m − 1) < m(wm1)∞.

Since γ̃q(m − 1) 6= wm1 · · · (Lemma 5.1), it follows by (170) that γ̃q(m − 1) = mwmaγ̃′ with

a ∈ {0, 1} and γ̃′ ∈ Aω
m. We also deduce by q ≤ Pm and by Lemma 5.2 that wmaγ̃′ < λ̃q(

m
q−1 −

1) < (wm1)∞. Again by Lemma 5.1 we have λ̃q(
m

q−1 − 1) 6= wm1 · · · : thus λ̃q(
m

q−1 − 1) = wm0 · · ·
, a = 0 and γ̃q(m − 1) = mwm0γ̃′.

Part 5. If part.

Suppose x univoque and fix n. We distinguish the cases xn = 1 and xn = m.

- If xn = 1, it follows by Proposition 5.1 and Part 4 that for every n ≥ 1 such that xn = 1

wm0 · · · = λ̃q(
m

q − 1
− 1) < σnx < γ̃q(m − 1) = mwm0 · · ·

By Proposition 5.1 we have that x ∈ {1, m}ω; thus the inequalities above imply:

wm1 ≤ xn+1 · · · xn+|w|+2 ≤ mw1

and, by the arbitrariety of n, we get (wm1)ω ≤ σnx ≤ (mw1)ω. Hence, by the last part of

Theorem 1.4:

(171) min sm < σnx ≤ max sm.

- If xn = m there exists 0 < k < n such that xn−k = 1 and σn−kx = mkσnx. Hence it follows

by the previous case and by the last part of Theorem 1.4 that:

(172) min sm = 1(wm1)ω ≤ σnx < mkσnx = σn−kx ≤ max sm.

Part 6. Only if part.

Suppose now x satisfying (168). The left inequality implies xn 6= 0 for every n ≥ 1. Thus we may

just verify the conditions of Proposition 5.1 for the cases xn = 1 and xn = m.

- If xn = 1, then

σnx
(168)
≤ max sm = (mw1)ω Part 4

< γ̃q(m − 1)

and

σn−1x = 1σnx
(168)
≥ min sm = 1(wm1)ω Part 4

> 1λ̃q

(
m

q − 1
− 1

)
.
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- The right inequality in (168) implies that if xn = m then there exists k ≥ 1 such that

xn+k = 1. Thus

σnx = mk−11σn+k+1x > 1σn+k+1x

(168)
≥ (1wm)ω

Part 4
> λ̃q

(
m

q − 1
− 1

)

m≥2
> λ̃q

(
m

q − 1
− (m − 1)

)
.

(173)

�

5. A lexicographical property of periodic sturmian sequences

This section is devoted to the proof of the following result.

PROPOSITION 5.3. Let s = (wab)ω be a periodic sturmian word with digits in the alphabet {a, b}.

If x ∈ {a, b}ω satisfies:

(174) min s ≤ σnx ≤ max s.

for every n ≥ 0, then x ∈ Orb(s).

REMARK 5.5. Proposition 5.3 is a general result on binary alphabets that may seem a bit far from our

study of univoque sequences. Nevertheless by comparing the statements of Proposition 5.2 and of Proposi-

tion 5.3 we can see how Proposition 5.3 actually implies a further restriction on the univoque sequences in

small base. This reasoning is used in the following section, where we explicitely characterize the univoque

expansions in small base.

LEMMA 5.3. Let x be a purely periodic sequence. Suppose max x = vω (resp. min x = vω) and let u

be a prefix of v (resp. of v). Then uω > vω (resp. uω < vω).

PROOF. By definition u is a prefix of v (resp. v) then there exists a non empty word y such

that v = uy (resp. v = uy). Since vω = max x (resp. vω = min x ) then vω > yvω (resp. v < yvω)

Thus for every n ≥ 2:

vω = uyvω
< uuyvω

< · · · < unyvω
< uω

(resp.vω = uyvω
> uuyvω

> · · · > unyvω
> uω).

�

PROOF OF PROPOSITION 5.3. Let x be a sequence satifying (174). Since s is a periodic stur-

mian word, there exists a word w such that min s = (awb)ω and max s = (bwa)ω so that (174) can

be rewritten as follows.

(175) (awb)ω ≤ σnx ≤ (bwa)ω.

Want to characterize the left special factors of a sequence x satifying (175). Let y be a left

special factor of x. By definition, there exist k1, k2 ≥ 0 and x′, x′′ ∈ {a, b}ω such that σk1x = ayx′

and σk2x = byx′′. Thus by (175) we get:

(176) ayx′ ≥ (awb)ω and byx′′ ≤ (bwa)ω.

The lexicographic inequalities above are compatible if and only if y is a prefix of w and, con-

sequently, the length of the left special factors is bounded by | w |. Hence we may deduce by

Proposition 1.1 that x is purely periodic.
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Call y the longest left special factor. Since x as exactly one left special factor of length k ≤| y |,
F|y|+1 =| y | +2 and the period of x is at least | y | +2. By the maximality of y we have F|y|+2 =|
y | +2, thus the period of x is equal to | y | +2 and

σk1x = (ayt′)ω and σk2x = (byt′′)ω

with t′, t′′ ∈ {a, b} and, because of the maximality of | y |, with t′ 6= t′′.
In order to complete the proof it sufficies to show that y = w. Suppose on the contrary that y

is a proper prefix of w: then either yt′ or yt′′ is a prefix of w. By denoting u := w1 · · ·w|y|+1 such a

prefix, we get:

(aw)ω ≤ (au)ω or (bu)ω ≤ (bu)ω

and, by Lemma 5.3, the required contradiction.

�

REMARK 5.6. Proposition 5.3 is a reformulation of well known results in the theory of sturmian words,

see [AG09] for a survey. We presented a new, independent proof with the purpose of making the reasoning

along this chapter as self-contained as possible.

6. Characterization of univoque expansions in small base

In this section we prove the main result of the chapter. Fix a normal ternary alphabet Am and

define

Uq := {x ∈ Aω
m | x is univoque in base q}.

THEOREM 5.3. Let m be such that GAm < 1 +
√

m
m−1 . Let Uq be the set of unique expansions in base

q ∈ (GAm , 1 +
√

m
m−1 ] and consider the sturmian word associated to the alphabet, say sm. Then

Uq = {mtx | x ∈ Orb(sm), x = 1x′, x′ ∈ Aω
m; t ≥ 0}

∪ {0tx | x ∈ Orb(sm), x = 1x′, x′ ∈ Aω
m, πq(x) < 1; t ≥ 0}.

(177)

PROOF. First of all note that if a sequence x is univoque in base q > GAm ≥ 2 for every m ≥ 2

then for every t ≥ 0 y := mtx is univoque, too. In fact the univoqueness of x implies that we need

to check the conditions of Proposition 5.1 only for indexes n ≤ t. If n ≤ t then σny = mt−nx and

we distinguish the cases x1 = 1 and x1 = m. The case x1 = 0 cannot occour because of Proposition

5.1.

Now, if x1 = 1 then by the univoqueness condition (156) of Proposition 5.1:

πq(σny) = πq(mt−nx) ≥ πq(x) = πq(x1σx)

=
1

q
+

1

q
πq(σx) >

1

q
+

1

q

(
m

q − 1
− 1

)
≥ m

q − 1
− (m − 1).

Since the condition (157) of Proposition 5.1 is satisfied, we deduce the univoqueness of y.

If x1 = m then by the univoqueness condition (157) of Proposition 5.1:

πq(σny) = πq(mt−nx) ≥ πq(x) = πq(x1σx)

=
m

q
+

1

q
πq(σx) >

m

q
+

1

q

(
m

q − 1
− (m − 1)

)
>

m

q − 1
− (m − 1)

and this implies the univoqueness of y, as well.

By a similar argument we can convince ourselves that the conditions x ∈ Uq and πq(x) < 1

are necessary and sufficient for the univoqueness of 0tx for every t ≥ 0.
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Moreover if 0tx is univoque only if x1 6= m. In fact by supposing y1 = m and by applying the

univoqueness condition (157) of Proposition 5.1 we get:

πq(y) = πq(mσy) =
m

q
+

1

q

(
m

q − 1
− (m − 1)

)
≥ 1.

and, consequently, a contradiction with the hypothesis πq(y) < 1.

In view of the previous reasonings we can consider without loss of generality the set U′
q :=

Uq ∩ 1Aω
m = {x | x is univoque in base q, x = 1x′, x′ ∈ Aω

m}.

By applying Proposition 5.2 and Proposition 5.3 we get

U′
q = {x ∈ Aω

m | x = 1x′, x′ ∈ Aω
m, sm ≤ σnx ≤ max sm}

= {x ∈ Aω
m | x = 1x′, x′ ∈ Aω

m, x ∈ Orb(sm)}

and hence the thesis. �

COROLLARY 5.1. If 1 +
√

m
m−1 ≤ 1+

√
m+4

2 , namely m ≥ 7.26637, for every q ∈ (GAm , 1 +
√

m
m−1 ]

Uq = {mtx|x ∈ Orb(sm)}.

PROOF. It sufficies to show that if x ∈ Uq then x 6= 0t1x′. Suppose on the contrary x = 0t1x′

for some t > 0. Then by univoqueness conditions (154) and (156) of Proposition 5.1 we deduce:

πq(1x′) < 1 and πq(x′) >
m

q − 1
− 1.

The inequalities above are compatible only if q >
1+

√
m+4

2 but it is impossible because q is supp-

posed to be smaller than 1 +
√

m
m−1 . �

EXAMPLE 5.3. Consider the alphabet A3. The sturmian sequence associated to A3 is s3 = (13)ω (see

Example 5.1) and for every q ∈ (GA3
, 1 +

√
3
2 ]:

Uq = {3t(13)ω | t ≥ 0}

EXAMPLE 5.4. Consider the alphabets A2, A4 and A8 and recall that the respective sturmian se-

quences are (1)ω, (41)ω and (881)ω while the generalized Golden Mean is always equal to 2 (see Example

5.2).

Since m = 2 does not satisfy the condition of Corollary 5.1, for every q ∈ (2, 1 +
√

2]:

Uq = {2t(1)ω | t ≥ 0} ∪ {0t(1)ω | t ≥ 0}

Conversely m = 4, 8 satisfy the condition of Corollary 5.1, thus for every suitable q:

U4 = {4t(14)ω | t ≥ 0} and U8 = {(8t(188)ω | t ≥ 0}.

EXAMPLE 5.5. The sturmian sequence associated to alphabet A5 is s5 = (51551551)ω. Thus s5 has

integer digits and more than one occurrence of 1 in its period. Numerical evidence suggests that this is a

rare property, in fact considering m ∈ N and 2 ≤ m ≤ 216 this property is true in only 7 cases.

Nevetheless, in order to enlight the structure of Uq, it is useful to show how Theorem 5.3 can be applied

to this alphabet. For every q ∈ (GA5
, 1 +

√
5
4 ]:

U5 = {5t(15515515)ω, 5t(15515155)ω, 5t(15155155)ω | t ≥ 0}.

As a consequence of Proposition 4.3, we have the following extension of Theorem 5.3 to arbi-

trary alphabets.
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COROLLARY 5.2. Let A an arbitrary alphabet such that N(A) = Am, with GAm < 1 +
√

m
m−1 ,

and let φ be the digit-wise normalizing map. Then for every q ∈ (GAm , 1 +
√

m
m−1 ], the set of univoque

sequences with digit in A and base q, say UA,q, satisfies:

UA,q = {φA(mtx) | x ∈ Orb(sm), x = 1x′, x′ ∈ Aω
m; t ≥ 0}

∪ {φA(0tx) | x ∈ Orb(sm), x = 1x′, x′ ∈ Aω
m, πq(x) < 1; t ≥ 0}.

EXAMPLE 5.6. Let A = {a1, a2, a3} be an alphabet with constant gaps, i.e. a2 − a1 = a3 − a2. Since

N(A) = {0, 1, 2}, GA = 2 and for every q ∈ (2, 1 +
√

2]:

UA,q = {at
3(a2)

ω | t ≥ 0} ∪ {at
1(a2)

ω | t ≥ 0}.

7. Overview of original contributions, conclusions and further developments

A relation between m-admissible and sturmian words. We recall that m-admissible sequences

have been defined in Section 7 as sequences δ = (δi) ∈ {1, m}N satisfying

1δ2δ3 · · · ≤ (δn+i) ≤ δ1δ2 · · ·

for every n = 0, 1, . . . . In Chapter 4 we associated to every m an appropriate m-admissible se-

quence, here denoted δm. The sequence δm defines a system of equations whose greatest solution

is the critical base of the alphabet Am.

THEOREM. Let m be such that m-admissible sequence δm = δ1δ2 · · · associated to m is purely pe-

riodic, namely GAm < 1 +
√

m
m−1 . Then the sequence sm := δ2δ3 · · · is a sturmian sequence and it is

uniquely determined by the conditions:

if p′m > 1 and πp′m(max sm) = m − 1, then p′m ≤ 1 +

√
m

m − 1
;

and

if p′′m > 1 and πp′′m (min sm) = q(
m

p′′m − 1
− 1)− 1, then p′′m ≤ 1 +

√
m

m − 1
.

Moreover for every q > GAm the sequence sm is univoque in base q.

Under the assumption that δm is purely periodic, we defined the sequence sm the sturmian

sequence associated to the alphabet Am. By a well known result on periodic sturmian words, we have

that sm = (wm1)ω for some palindrome word w ∈ {1, m}∗.

Univoque sequences in small bases. When the q is sufficiently small, namely q ≤ Pm =

1 +
√

m
m−1 , then the univoque sequences satisfy particular characterizing properties.

PROPOSITION. Let m ≥ 2 be such that GAm < 1 +
√

m
m−1 and let sm = (wm1)∞ be the sturmian

word associated to the alphabet Am. If x is a sequence with x1 = 1, then x is univoque in base q ∈
(GAm , Pm] if and only if for every n ≥ 0:

min sm ≤ σnx ≤ max sm.

REMARK. The univoque sequences in small base belong to {1, m}N: this result has been proved in

Chapter 4 and it is confirmed by the result above.
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Characterization of univoque sequences in small base. Fix a normal ternary alphabet Am

and define

Uq := {x ∈ Aω
m | x is univoque in base q}.

THEOREM. Let m be such that GAm < 1 +
√

m
m−1 and let Uq be the set of unique expansions in base

q ∈ (GAm , 1 +
√

m
m−1 ]. Consider the sturmian word associated to the alphabet, say sm. Then

Uq = {mtx | x ∈ Orb(sm), x = 1x′, x′ ∈ Aω
m; t ≥ 0}

∪ {0tx | x ∈ Orb(sm), x = 1x′, x′ ∈ Aω
m, πq(x) < 1; t ≥ 0}.

The result is extended to the general ternary alphabets.

COROLLARY. Let A an arbitrary alphabet such that N(A) = Am, with GAm < 1 +
√

m
m−1 , and let

φ be the digit-wise normalizing map. Then for every q ∈ (GAm , 1 +
√

m
m−1 ], the set of univoque sequences

with digit in A and base q, say UA,q, satisfies:

UA,q = {φA(mtx) | x ∈ Orb(sm), x = 1x′, x′ ∈ Aω
m; t ≥ 0}

∪ {φA(0tx) | x ∈ Orb(sm), x = 1x′, x′ ∈ Aω
m, πq(x) < 1; t ≥ 0}.

Conclusions and further developments. In this chapter we focused on the minimal uni-

voque sequences, i.e. the univoque sequences that first appear when choosing a base larger than

the critical base. Our characterization concerns the set of ternary alphabets with ratio between

gaps m and periodic m-admissible sequence. This is a very large set of alphabets, because in

Chapter 4 we proved that the set of ratios with aperiodic m-admissible sequence is a Cantor set.

We proved that when the m-admissible sequence is periodic, the set of univoque sequences Uq in

base q ≤ Pm is uniquely composed by eventually periodic sequences with constant anti-period.

This implies that Uq is recognizable by a finite automaton. The periodic suffix of minimal uni-

voque sequences is proved to be a periodic sturmian sequence.

After the appearence of [KLP] on the archive for electronic preprints ArXiv.org, Jean-Paul

Allouche remarked the relation between aperiodic admissible sequences and proper sturmian

words (see Remark 4.5). This stimulated the study of the connection between univoque and

periodic sturmian sequences, here established by a common characterizing property. A deeper

investigation of this relation could be useful for a generalization to arbitrary alphabets.
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