CORSO DI LAUREA IN ING. INFORMAZIONE CORSO DI LAUREA IN ING. MECCANICA PER LA TRANSIZIONE VERDE CORSO DI LAUREA IN ING. DELL'AMBIENTE PER LO SVILUPPO SOSTENIBILE SEDE DIDATTICA DI LATINA - a.a. 2023/2024

prova scritta di ANALISI MATEMATICA 1 - 11 giugno 2023

corso di laurea IN ING
DATE NON DISPONIBILI PER LA TEORIA PORTA LE EDO?
PORTA LE EDO?
GIUSTIFICARE ADEGUATAMENTE TUTTI I PASSAGGI 1) (4,5 punti) Studiare il carattere della serie $\sum_{n=1}^{+\infty} \frac{n^n}{(n!)^2}$ e della successione ad essa associata. 2) (10,5 punti) Studiare il grafico della funzione
Studiare il carattere della serie $\sum_{n=1}^{+\infty} \frac{n^n}{(n!)^2}$ e della successione ad essa associata. 2) (10,5 punti) Studiare il grafico della funzione
Studiare il carattere della serie $\sum_{n=1}^{+\infty} \frac{n^n}{(n!)^2}$ e della successione ad essa associata. 2) (10,5 punti) Studiare il grafico della funzione
$\sum_{n=1}^{+\infty} \frac{n^n}{(n!)^2}$ e della successione ad essa associata. 2) (10,5 punti) Studiare il grafico della funzione
e della successione ad essa associata. 2) (10,5 punti) Studiare il grafico della funzione
Studiare il grafico della funzione
Studiare il grafico della funzione
$f(x) = e^{1/(x^2 - 4x + 3)}$
in ipotesi di numero minimo di flessi.
3) (4,5 punti)
Risolvere l'equazione $(1-\sqrt{3}\ i)z^4 = 1+\sqrt{3}\ i \qquad , \qquad z \in {\bf C}\ .$
4) (7 punti)
Dopo aver verificato l'esistenza e unicità della soluzione (locale? globale? perché?), risolvere il problema di Cauchy
$\begin{cases} y'(x) + 2xy(x) = \frac{x}{1 + e^{x^2}} \\ y(0) = \frac{3}{2} \ln 2 \end{cases}.$
$y(0) = \frac{3}{2} \ln 2$
5) (8,5 punti)
Determinare i valori del parametro $\alpha \in I\!\!R$ per i quali la funzione
$f(x) = \frac{\ln(1+x^2) + \cos x - e^{x^2/2}}{x^{\alpha} \arctan x}$

sia integrabile in (0,1].