CORSO DI LAUREA IN ING. INFORMAZIONE CORSO DI LAUREA IN ING. MECCANICA PER LA TRANSIZIONE VERDE CORSO DI LAUREA IN ING. DELL'AMBIENTE PER LO SVILUPPO SOSTENIBILE SEDE DIDATTICA DI LATINA - a.a. 2023/2024

prova scritta di ANALISI MATEMATICA 1 - 8 luglio 2024

COGNOME NOME matricola
corso di laurea IN ING TEORIA ORALE O SCRITTA?
DATE DISPONIBILI PER LA TEORIA
DATE NON DISPONIBILI PER LA TEORIA
PORTA LE EDO? ESONERATO?
GIUSTIFICARE ADEGUATAMENTE TUTTI I PASSAGGI
1) (4,5 punti)
Studiare convergenza semplice e assoluta della serie
$\sum_{n=1}^{+\infty} \frac{(-1)^n}{\ln(n^2 + 5n + 4)} .$
2) (11 punti)
Studiare il grafico della funzione $f(x) = \frac{\sqrt{2x+x^2}}{x^2} \ ,$
in ipotesi di numero minimo di flessi.
3) (5 punti)
Risolvere l'equazione $e^{ z ^2+ziIm(z)}=1 \qquad , \qquad z \in {\bf C} \ ,$
riportando le soluzioni nel piano di Gauss.
4) (9 punti)
Risolvere il problema di Cauchy
$\begin{cases} y''(x) + y(x) = \frac{1}{\sin x} \\ y(\pi/2) = 0 \\ y'(\pi/2) = \pi/2 \end{cases}.$

5) (5,5 punti)

Utilizzando gli opportuni criteri, stabilire se la funzione

$$f(x) = \frac{-\arctan x + x}{x^3}$$

sia integrabile in $(0, +\infty)$.