19. Sì. Infatti, poiché $a_n \to 1$, esiste ν tale che per ogni $n > \nu$ risulta $a_n > \frac{1}{2}$. Sia $\lambda = \min\left\{\frac{1}{2}, a_1, a_2, \dots, a_{\nu}\right\}$. Dato che tutti i termini a_n sono positivi, anche λ sarà positivo, e si avrà $a_n \geq \lambda$ per ogni $n \in \mathbb{N}$. Se ora K è tale che $K\lambda > 1$, risulterà $Ka_n + b_n > 1 + b_n > 0$.

20. No. Ad esempio, sia $a_n = 1$, e sia b_n la successione che assume il valore 0 per n pari, e $\left(1 - \frac{1}{n}\right)^{1/n}$ per n dispari. La successione $a_n + |b_n|^n$ varrà allora 1 per n pari, e $2 - \frac{1}{n}$ per n dispari, e quindi non avrà limite.

21. –1	22. 0	23. 1	24. 1
25. 0	26. 0	27. 0	
29, 0	30. 2	31. 3	28. ~∞
33. +∞	34. 1	35. $\max\{a^2, 1\}$	32. 6
37. 0	381	39. 0	36. +∞ 40. 0
41. 0	42. 0	43. $\frac{1}{e}$	44. $\frac{1}{2}$
45. 1	46. $\frac{4}{e}$	47. 1	48. +∞
49. $\frac{2}{3}$	50, 1	51. +∞	<i>52.</i> +∞
53. 1	54. 1	55. 1	56. 0
57∞	58. 0	59. ~∞	60. 0
61. Non esiste	62. −∞	63. 0	64. 0
65. −∞	66. –∞	67. e ¹⁴	68. +∞
69. 8	70. 0	71. $\frac{1}{3}$	72. +∞
73. +∞	74. +∞	75. 1	76. 0
77. 1	78. 0	79. +∞	80. 0
31. $\frac{27}{4}$	82. $\frac{27}{4}$	83. $\frac{h^h}{k^k(h-k)^{h-k}}$	

84. Se $\beta > 0$, il limite è 0 se $0 \le A < 1$, $+\infty$ se $A \ge 1$. Se $\beta = 0$, il limite è $+\infty$ se $\alpha > 0$, 0 se $\alpha < 0$, A se $\alpha = 0$. Se $\beta < 0$, il limite è $+\infty$ se $\alpha > 0$, 1 se $\alpha = 0$, 0 se $\alpha < 0$.

85. 0 86. -1 87. 0 88. $a \ge 3$ 89. -1 < a < 0

90. Supponiamo che $L=\lim_{n\to\infty}\sqrt[n]{a_n}\geq\lim_{n\to\infty}\sqrt[n]{b_n}=l$. Per ogni $\epsilon>0$ esiste un ν tale che per $n>\nu$ si ha $L-\epsilon<\sqrt[n]{a_n}< L+\epsilon$ e $\sqrt[n]{b_n}< l+\epsilon$. Per tali valori di n si ha allora $L-\epsilon<\sqrt[n]{a_n}\leq\sqrt[n]{a_n+b_n}<\sqrt[n]{(L+\epsilon)^n+(l+\epsilon)^n}\leq (L+\epsilon)\sqrt[n]{2}$. Se ora si prende ν così grande che sia anche $\sqrt[n]{2}<1+\epsilon$, si ottiene $L-\epsilon<\sqrt[n]{a_n+b_n}< L+\epsilon(L+1)+\epsilon^2$ per ogni $n>\nu$, e dunque la tesi. Si osservi che lo stesso risultato si ottiene supponendo solamente che max lim $\sqrt[n]{b_n}\leq\lim_{n\to\infty}\sqrt[n]{a_n}$.

91. Per $\epsilon > 0$, sia ν tale che per ogni $n > \nu$ risulti $L - \epsilon < a_n < L + \epsilon$. Per tali n si ha $q_n = \frac{a_1 + a_2 + \ldots + a_n}{n} = \frac{a_1 + a_2 + \ldots + a_{\nu}}{n} + \frac{a_{\nu+1} + \ldots + a_n}{n}$. Posto allora $M = a_1 + \ldots + a_{\nu}$, si ha $\frac{M}{n} + \frac{(n-\nu)(L-\epsilon)}{n} < q_n < \frac{M}{n} + \frac{(n-\nu)(L+\epsilon)}{n}$. Sia ora $\nu_1 > \nu$ un numero tale che per $n > \nu_1$ risulti $\frac{|M|}{n} < \epsilon$ e $\frac{\nu}{n} < \epsilon$. Se $n > \nu_1$, si ha $L - \epsilon(L+2) < q_n < L + 2\epsilon$, cosicché $\lim_{n \to \infty} q_n = L$.

92. Si ponga $b_n = a_n - a_{n-1}$; risulterà allora $a_n - a_0 = b_1 + b_2 + \ldots + b_n$, e dunque $\frac{a_n}{n} = \frac{b_1 + b_2 + \ldots + b_n}{n} + \frac{a_0}{n}$. Se $b = \lim_{n \to \infty} b_n = \lim_{n \to \infty} (a_n - a_{n-1})$, il secondo membro dell'ultima relazione tende a b grazie al risultato dell'esercizio precedente, e dunque anche $\lim_{n \to \infty} \frac{a_n}{n} = b$.

93. Tutti i termini della successione a_n sono maggiori di 1, e dunque risulta $a_{n+1} \le \sqrt{a_n} \le a_n$, cosicché la successione è decrescente, e di conseguenza ha limite L. Dalla relazione data segue, passando al limite, che $1 \le L \le \sqrt{L}$, e dunque L non può essere che 1.

94. Sia $P(x) = x^7 + x - \frac{1}{n}$. Si ha P(0) < 0, e P(1/n) > 0, cosicché P(x) ha uno zero compreso tra $0 \in \frac{1}{n}$ (Lezioni, cap. 1, Teorema 4.1). D'altra parte, se si ha $x^7 + x = y^7 + y = \frac{1}{n}$, ragionando come nella dimostrazione del teorema 4.2 del capitolo 1 delle Lezioni si dimostra che x = y; di conseguenza la radice x_n trovata è unica. Poiché $0 < x_n < \frac{1}{n}$, per il teorema dei carabinieri si conclude che $\lim_{n \to \infty} x_n = 0$.

95. Basta osservare che se $\tau < 0$ si ha $n\left\{\left(1 + \frac{1}{n}\right)^{\tau} - 1\right\} = \frac{n\left\{1 - \left(1 + \frac{1}{n}\right)^{-\tau}\right\}}{\left(1 + \frac{1}{n}\right)^{-\tau}}$, e utilizzare l'esempio precedente.

96. 1,0 97.
$$\frac{1}{5}$$
 98. 2,0 99. 0
100. $+\infty$,0 101. 1,0 102. 1 103. $+\infty$
104. $+\infty$ 105. 0 106. $\frac{1}{2}$ 107. $+\infty$, $-\infty$
108. $\frac{\pi}{2}$, $-\frac{\pi}{2}$ 109. 1, -1 110. 1, -1 111. $\lim_{n\to\infty} a_n = \frac{2}{3}$

112. $\lim_{n\to\infty}a_n=2$