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Introduction

These notes cover a portion of a course of the Doctorate Modelli e metodi mate-

matici per la tecnologia e la società, given in 2001 in Rome. The title of the course
was ‘Evolution equations and free boundary problems’ and its topics included,
essentially, an introduction to Stefan and Hele-Shaw problems.
Here only the material concerning the Stefan problem is partially reproduced.
The present notes assume the reader has some knowledge of the elementary theory
of Lp and Sobolev spaces, as well as of the basic results of existence and regularity
of solutions to smooth parabolic equations.
The bibliography is minimal; only books and articles quoted in the text are
referenced. See [12], [18] and [20] for further references.
I thank the audience of the course for many stimulating comments and questions,
and prof. R. Ricci for interesting discussions on the subject of these notes.

Rome, January 2002

Revised version: Rome, January 2004
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Notation

The notation employed here is essentially standard.
Appendix D contains a list of the main symbols used in the text.
Constants denoted by γ, C, Cδ, . . .may change fom line to line.
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CHAPTER 1

The classical formulation

In this chapter we consider the formulation of the Stefan problem as a classical
initial boundary value problem for a parabolic partial differential equation. A
portion of the boundary of the domain is a priori unknown (the free boundary),
and therefore two boundary conditions must be prescribed on it, instead than
only one, to obtain a well posed problem.

1. The Stefan condition

The Stefan problem ([17]) is probably the simplest mathematical model of a
phenomenon of change of phase. When a change of phase takes place, a latent

heat is either absorbed or released, while the temperature of the material changing
its phase remains constant. In the following we denote by L > 0 the latent heat
per unit of volume (p.u.v.), and neglect for the sake of simplicity any volume
change in the material undergoing the change of phase. We also assume the
critical temperature of change of phase to be a constant, θ0.
To be specific, consider at time t = t0 a domain A divided by the plane x1 = s0
into two subdomains. At time t = t0 the sub-domain A1 = A ∩ {x1 < s0} is
filled by water, while A2 = A ∩ {x1 > s0} is filled by ice. In the terminology of
problems of change of phase, A1 is the liquid phase and A2 is the solid phase.
The surface separating the two phases is referred to as the interface. Assume also
the setting is plane symmetric, that is the temperature θ is a function of x1 only,
besides the time t, and the interface is a plane at all times. Denote by x1 = s(t)
the position of the interface at time t. Note that, due to the natural assumption
that temperature is continuous,

θ(s(t)+, t) = θ(s(t)−, t) = θ0 , for all t. (1.1)

Assume ice is changing its phase, that is the interface is advancing into the solid
phase. Due to the symmetry assumption we stipulate, we may confine ourselves
to consider any portion D, say a disk, of the interface at time t0. At a later
time t1 > t0 the interface occupies a position s(t1) > s(t0) = s0. The cylinder
D × (s(t1), s(t0)) has been melted over the time interval (t0, t1) (see Figure 1).
The change of phase has therefore absorbed a quantity of heat

volume of the melted cylinder × latent heat p.u.v. = area(D)(s(t1) − s(t0))L .
(1.2)

The heat must be provided by diffusion, as we assume that no heat source or sink
is present. We adopt for heat diffusion Fourier’s law

heat flux = −kiDθ , (1.3)

where k1 > 0 is the diffusivity coefficient in water, and k2 > 0 is the diffusivity
coefficient in ice (in principle k1 6= k2). Thus, the quantity of heat in (1.2) must
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water
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Figure 1. Melting ice

equal

t1
∫

t0

∫

D(t)

[−k1Dθ(s(t)−, t) · e1 − k2Dθ(s(t)+, t) · (−e1)] dx2 dx3 dt =

area(D)

t1
∫

t0

[−k1θx1
(s(t)−, t) + k2θx1

(s(t)+, t)] dt . (1.4)

Equating the two quantities, dividing the equation by t1 − t0 and letting t1 → t0,
we finally find

−k1θx1
(s(t)−, t) + k2θx1

(s(t)+, t) = Lṡ(t) , (1.5)

where we have substituted t0 with the general time t, as the same procedure can
be obviously carried out at any time. This is called the Stefan condition on the
free boundary. We stress the fact that the Stefan condition is merely a law of
energetical balance.

Several remarks are in order.

Remark 1.1. Note that, although we did not assume anything on the values of
θ(x1, t) inside each one of the two phases, on physical grounds we should expect

θ ≥ θ0 , in water, i.e., in A1; θ ≤ θ0 , in ice, i.e., in A2. (1.6)

The equality θ ≡ θ0 in either one of the two phases (or in both) can not be ruled
out in the model. Rather, it corresponds to the case when a whole phase is at
critical temperature. Diffusion of heat, according to (1.3), can not take place in
that phase, as θx1

≡ 0 there. Thus (1.5) reduces to, e.g., if the solid phase is at
constant temperature,

−k1θx1
(s(t)−, t) = Lṡ(t) . (1.7)

Note that if θ > θ0 in water, (1.7) predicts that ṡ(t) > 0. In other words,
melting of ice is predicted by the model, instead of solidification of water. This
is consistent with obvious physical considerations.
Problems where one of the two phases is everywhere at the critical temperature
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are usually referred to (somehow misleadingly) as one phase problems, while the
general case where (1.5) is prescribed is the two phases problem. In the latter
case, the sign of ṡ(t), and therefore the physical behaviour of the system water/ice
predicted by the mathematical model, depends on the relative magnitude of the
two heat fluxes at the interface.

Remark 1.2. On the interface, which is also known as the free boundary two
conditions are therefore prescribed: (1.1) and (1.5).
In the case of a one phase problem, this fact has the following meaningful inter-
pretation in terms of the general theory of parabolic PDE: The boundary of the
domain where the heat equation (a parabolic equation based on (1.3)) is posed,
contains an a priori unknown portion, corresponding to the interface separat-
ing the liquid phase from the solid one. Clearly, if only the Dirichlet boundary
condition (1.1) was imposed on it, we could choose arbitrarily this part of the
boundary, and solve the corresponding initial value boundary problem. Appar-
ently the solution would not, in general, satisfy (1.7). A similar remark applies
to solutions found imposing just (1.7) (where now the functional form of the ar-
bitrarily given boundary x1 = s(t) is explicitly taken into account).
It is therefore evident that on the free boundary both conditions (1.1) and (1.7)
should be prescribed in order to have a well posed problem. (Or, anyway, in more
general free boundary problems, two different boundary conditions are required.)
Incidentally, this circle of ideas provides the basic ingredient of a possible proof
of the existence of solutions: we assign arbitrarily a ‘candidate’ free boundary s∗

and consider the solution θ to the problem, say, corresponding to the data (1.1).
Then we define a transformed boundary s∗∗ exploiting (1.7), i.e.,

−k1θx1
(s∗(t)−, t) = Lṡ∗∗(t) .

A fixed point of this transform corresponds to a solution of the complete problem.

Remark 1.3. The meaning of conditions (1.1) and (1.5) in the context of two
phases problems is probably better understood in terms of the weak formulation

of the Stefan problem, which is discussed below in Chapter 2. We remark here
that, actually, one phase problems are just two phases problems with one phase
at constant temperature, so that the discussion in Chapter 2 applies to them too.

Remark 1.4. Problems where the temperature restriction (1.6) is not fulfilled,
are sometimes called undercooled Stefan problems. We do not treat them here,
albeit their mathematical and physical interest (see however Subsection 2.4 of
Chapter 2); let us only recall that they are, in some sense, ill posed.

1.1. Exercises.

1.1. Write the analogs of Stefan condition (1.5) in the cases of cylindrical and
spherical symmetry in R

3.

1.2. Note that if we assume, in (1.5), θ < θ0 in A1 and θ ≡ θ0 in A2, we find
ṡ(t) < 0. This appears to be inconsistent with physical intuition: a phase of
ice at sub critical temperature should grow into a phase of water at identically
critical temperature. Indeed, (1.5) is not a suitable model for the physical setting
considered here. In other words, the Stefan condition in the form given above
keeps memory of which side of the interface is occupied by which phase. Find
out where we implicitly took into account this piece of information and write the
Stefan condition when ice and water switch places.
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1.3. Prove that Stefan condition (1.5) does not change its form if bounded volu-
metric heat sources are present (i.e., if the heat equation is not homogeneous).

2. The free boundary problem

Keeping the plane symmetry setting considered above, we may of course assume
the problem is one dimensional. Denoting by x the space variable, the complete
two phases problem can be written as

c1θt − k1θxx = 0 , in Q1, (2.1)

c2θt − k2θxx = 0 , in Q2, (2.2)

−k1θx(0, t) = h1(t) , 0 < t < T , (2.3)

−k2θx(d, t) = h2(t) , 0 < t < T , (2.4)

θ(x, 0) = Θ(x) , 0 < x < d , (2.5)

−k1θx(s(t)−, t) + k2θx(s(t)+, t) = Lṡ(t) , 0 < t < T , (2.6)

θ(s(t)−, t) = θ(s(t)+, t) = θ0 , 0 < t < T , (2.7)

s(0) = b . (2.8)

Here 0 < b < d, T and c1, c2, k1, k2 are given positive numbers. The ci represent
the thermal capacities in the two phases. The liquid phase occupies at the initial
time t = 0 the interval (0, b), while the solid phase occupies (b, d). The problem
is posed in the time interval (0, T ). Moreover we have set

Q1 = {(x, t) | 0 < x < s(t) , 0 < t < T} ,
Q2 = {(x, t) | s(t) < x < d , 0 < t < T} .

We are assuming that 0 < s(t) < d for all 0 < t < T . If the free boundary
hits one of the two fixed boundaries x = 0 and x = d, say at time t∗, of course
the formulation above should be changed. In practice, one of the two phases
disappears at t = t∗. We leave to the reader the simple task of writing the
mathematical model for t > t∗.
One could impose other types of boundary data, instead of (2.3), (2.4), e.g.,
Dirichlet data.
If we are to attach the physical meaning of a change of phase model to the problem
above, the data must satisfy suitable conditions. At any rate

Θ(x) ≥ θ0 , 0 < x < b ; Θ(x) ≤ θ0 , b < x < d .

Essentially, we need θ ≥ θ0 in Q1 and θ ≤ θ0 in Q2.
Actually, we will deal mainly with the one phase version of (2.1)–(2.8) where

the solid phase is at constant temperature. Namely, after adimensionalization,
we look at

ut − uxx = 0 , in Qs,T , (2.9)

−ux(0, t) = h(t) > 0 , 0 < t < T , (2.10)

u(x, 0) = u0(x) ≥ 0 , 0 < x < b , (2.11)

−ux(s(t), t) = ṡ(t) , 0 < t < T , (2.12)

u(s(t), t) = 0 , 0 < t < T , (2.13)

s(0) = b . (2.14)
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(We have kept the old names for all variables excepting the unknown u.) Here
we denote for each positive function s ∈ C([0, T ]), such s(0) = b,

Qs,T = {(x, t) | 0 < x < s(t) , 0 < t < T} .
We regard the rescaled temperature u as a function defined in Qs,T . The solid
phase therefore does not appear explicitly in the problem. As a matter of fact
we assume it to be unbounded in the positive x direction (i.e., d = +∞), so that
no upper limit has to be imposed on the growth of the free boundary s. The
sign restrictions in (2.10) and in (2.11) are imposed so that u > 0 in Qs,T , see
Proposition 4.1 below.

Definition 2.1. A solution to problem (2.9)–(2.14) is a pair (u, s) with

s ∈ C1((0, T ]) ∩ C([0, T ]) , s(0) = b , s(t) > 0 , 0 ≤ t ≤ T ;

u ∈ C(Qs,T ) ∩ C2,1(Qs,T ) , ux ∈ C(Qs,T − {t = 0}) ,
and such that (2.9)–(2.14) are satisfied in a classical pointwise sense.

We prove a theorem of existence and uniqueness of solutions to (2.9)–(2.14),
under the assumptions

h ∈ C([0, T ]) , h(t) > 0 , 0 ≤ t ≤ T ; (2.15)

u0 ∈ C([0, b]) , 0 ≤ u0(x) ≤ H(b− x) , 0 ≤ x ≤ b . (2.16)

We also study some qualitative behaviour of the solution. The adimensionaliza-
tion of the problem does not play a substantial role in the mathematical theory
we develop here.
For further reading on the one-phase Stefan problem, we refer the reader to [5],
[3]; we employ in this chapter the techniques found there, with some changes.

Remark 2.1. The free boundary problem (2.9)–(2.14) is strongly non linear, in
spite of the linearity of the PDE and of the boundary conditions there. Indeed,
recall that the free boundary s itself is an unknown of the problem; its dependence
on the data is not linear (as, e.g., the explicit examples of Section 3 show).

2.1. Exercises.

2.1. Prove that the change of variables

θ 7→ αu+ θ0 , x 7→ βξ , t 7→ γτ ,

allows one to write the one phase problem in the adimensionalized form (2.9)–
(2.14), for a suitable choice of the constants α, β, γ.
Also note that adimensionalizing the complete two phases problem similarly is in
general impossible.

3. Explicit examples of solutions

Example 1. An explicit solution of the heat equation (2.9) is given by

v(x, t) = erf

(

x

2
√
t

)

=
2√
π

x/2
√

t
∫

0

e−z2

dz , x , t > 0 ,

v(x, 0) = 1 , x > 0 .
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Here erf denotes the well known ‘error function’. Fix C > 0 arbitrarily, and set,
for a α > 0 to be chosen presently,

u(x, t) = C

{

erf α− erf

(

x

2
√
t

)}

.

Define also s(t) = 2α
√
t; note that s(0) = 0. Thus u > 0 in Qs,T , and (2.9) as

well as (2.13) are satisfied. By direct calculation

ux(x, t) = − C√
πt
e−

x2

4t .

Hence,

ux(s(t), t) = ux(2α
√
t, t) = − C√

πt
e−α2

= −ṡ(t) = − α√
t
,

if and only if

C =
√
παeα2

.

Note that on the fixed boundary x = 0 we may select either one of the conditions

ux(0, t) = − C√
πt
, or u(0, t) = C erf α .

We have proven that, when α is chosen as above,

u(x, t) = 2αeα2

α
∫

x/2
√

t

e−z2

dz (3.1)

solves the problem sketched in Figure 2. Note however that u is not continuous
at (0, 0); the notion of solution in this connection should be suitably redefined.

ux = −C/
√

πt

or

u = C erf α

t

x

s(t) = 2α
√

t

u = 0

ux = −ṡ(t) = −α/
√

t

ut − uxx = 0

Figure 2. The Stefan problem solved by u in (3.1)

Example 2. It is obvious by direct inspection that the function

u(x, t) = et−x − 1 , (3.2)

solves the Stefan problem in Figure 3, corresponding to the free boundary s(t) = t.
Note that we are forced to prescribe an exponentially increasing flux on x = 0 in
order to obtain a linear growth for s(t).



4. BASIC ESTIMATES 7

ux = −et

or

u = et − 1

t

x

s(t) = t

u = 0

ux = −ṡ(t) = −1

ut − uxx = 0

Figure 3. The Stefan problem solved by u in (3.2)

3.1. Exercises.

3.1. Convince yourself that the solutions corresponding to ux(0, t) = −2C/
√
πt,

in the case of Example 1, and to ux(0, t) = −2et in the case of Example 2, can
not be obtained by linearity from the ones given above.

4. Basic estimates

Proposition 4.1. If (u, s) is a solution to (2.9)–(2.14), then

u(x, t) > 0 , in Qs,T ; (4.1)

ṡ(t) > 0 , for all t > 0. (4.2)

Proof. By virtue of the weak maximum principle, u must attain its maximum
on the parabolic boundary of Qs,T , i.e., on

∂Qs,T − {(x, t) | t = T , 0 < x < s(T )} .
The data h being positive, the maximum is attained on t = 0 or on x = s(t).
Therefore u ≥ 0 (remember that u0 ≥ 0). If we had u(x̄, t̄) = 0 in some (x̄, t̄) ∈
Qs,T , invoking the strong maximum principle we would obtain u ≡ 0 inQs,T∩{t <
t̄}. This is again inconsistent with h > 0. Thus (4.1) is proven.
Then, the value u = 0 attained on the free boundary is a minimum for u. Re-
calling the parabolic version of Hopf’s lemma, we infer

ṡ(t) = −ux(s(t), t) > 0 , for all t > 0.

�

Remark 4.1. The proof of estimate (4.1) does not make use of the Stefan condi-
tion (2.12). In the same spirit, we consider in the following results solutions to the
initial value boundary problem obtained removing Stefan condition from the for-
mulation. The rationale for this approach is that we want to apply those results
to ‘approximating’ solutions constructed according to the ideas of Remark 1.2.

Lemma 4.1. Let u be a solution of (2.9), (2.10), (2.11), (2.13), where s is assumed
to be a positive non decreasing Lipschitz continuous function in [0, T ], such that
s(0) = b. Let (2.15) and (2.16) be in force. Then ux is continuous up to all the
points of the boundary of Qs,T of the form (0, t), (s(t), t), with T ≥ t > 0.
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The regularity of ux up to x = 0 is classical; the proof of this result will be
completed in Section 7, see Lemma 7.1.

Proposition 4.2. Let u, s be as in Lemma 4.1. Then

0 < u(x, t) ≤M(s(t) − x) , in Qs,T , (4.3)

where M = max(‖h‖∞ , H).

Proof. Define v(x, t) = M(s(t) − x). It follows immediately

vt − vxx = Mṡ(t) ≥ 0 , in Qs,T ;

v(s(t), t) = u(s(t), t) = 0 , 0 ≤ t ≤ T ,

vx(0, t) = −M ≤ −h = ux(0, t) , 0 < t < T ,

v(x, 0) = M(b− x) ≥ u0(x) = u(x, 0) , 0 ≤ x ≤ b .

Therefore, taking into account the results of Appendix A,

v(x, t) ≥ u(x, t) , in Qs,T .

�

Corollary 4.1. If u, s are as in Proposition 4.2, then

0 > ux(s(t), t) ≥ −M , 0 < t < T , (4.4)

where M is the constant defined in Proposition 4.2.

Proof. A trivial consequence of Proposition 4.1 and of Proposition 4.2, as well
as of Lemma 4.1. We also keep in mind Remark 4.1, and of course make use of
Hopf’s lemma for the strict inequality in (4.4). �

Remark 4.2. We stress the fact that the barrier construction of Proposition 4.2
is made possible by the fact that ṡ ≥ 0. In turn, this is for solutions of the Stefan
problem a consequence of the positivity of u. Thus, such a barrier function, and in
general any similar barrier function, does not exist in the case of the undercooled
Stefan problem.

4.1. Exercises.

4.1. Note that the function v defined in the proof of Proposition 4.2 is just
Lipschitz continuous in t. In spite of this fact, one may apply to v − u the weak
maximum principle in the form given in Section 4 of Appendix A. Carry out the
proof in detail.

5. Existence and uniqueness of the solution

We prove here

Theorem 5.1. Assume (2.15), (2.16). Then there exists a unique solution to
(2.9)–(2.14).

Let u, s be as in Proposition 4.2. Moreover assume that

s ∈ Σ := {σ ∈ Lip([0, T ]) | 0 ≤ σ̇ ≤M , σ(0) = b} .
Here M is the constant defined in Proposition 4.2. The set Σ is a convex compact
subset of the Banach space C([0, T ]), equipped with the max norm. A useful
property of all s ∈ Σ is

b+Mt ≥ s(t) ≥ b , 0 ≤ t ≤ T .
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Define the transform T (s) by

T (s)(t) = b−
t

∫

0

ux(s(τ), τ) dτ , T ≥ t ≥ 0 .

Note that, as a consequence of Lemma 4.1 and of Corollary 4.1,

T (s) ∈ Lip([0, T ]) ∩ C1((0, T ]) ,

and

M ≥ d

dt
T (s)(t) = −ux(s(t), t) ≥ 0 , t > 0 .

Then T : Σ → Σ. Also note that a fixed point of T corresponds to a solution of
our Stefan problem.
We use the divergence theorem to transform the boundary flux integral defining
T (s). Namely we write

0 =

t
∫

0

s(τ)
∫

0

(uτ − uxx) dxdτ = −
b

∫

0

u0(x) dx−
t

∫

0

u(s(τ), τ)ṡ(τ) dτ

+

s(t)
∫

0

u(x, t) dx−
t

∫

0

ux(s(τ), τ) dτ −
t

∫

0

h(τ) dτ .

Therefore

T (s)(t) = b−
t

∫

0

ux(s(τ), τ) dτ =

b+

b
∫

0

u0(x) dx+

t
∫

0

h(τ) dτ −
s(t)
∫

0

u(x, t) dx =: F (t) −
s(t)
∫

0

u(x, t) dx . (5.1)

Note that this equality allows us to express T (s) in terms of more regular func-
tions than the flux ux(s(t), t), which appeared in its original definition. We are
now in a position to prove that T is continuous in the max norm.
Let s1, s2 ∈ Σ. Let us define

α(t) = min(s1(t), s2(t)) , β(t) = max(s1(t), s2(t)) ,

i = 1 , if β(t) = s1(t), i = 2 , otherwise.

(The number i is a function of time; this will not have any specific relevance.)
Let us also define

v(x, t) = u1(x, t) − u2(x, t) .

Then v satisfies

vt − vxx = 0 , in Qα,T , (5.2)

vx(0, t) = 0 , 0 < t < T , (5.3)

v(x, 0) = 0 , 0 < x < b , (5.4)

|v(α(t), t)| = |ui(α(t), t)| ≤M(β(t) − α(t)) , 0 < t < T . (5.5)
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Therefore, we may invoke the maximum principle to obtain

‖v‖∞,t := max
Qα,t

|v| ≤M‖s1 − s2‖∞,t , (5.6)

where we also denote

‖s1 − s2‖∞,t = max
0≤τ≤t

|s1(τ) − s2(τ)| .

On the other hand, we have

T (s1)(t) − T (s2)(t) =

s2(t)
∫

0

u2(x, t) dx−
s1(t)
∫

0

u1(x, t) dx

= −
α(t)
∫

0

v(x, t) dx+ (−1)i

β(t)
∫

α(t)

ui(x, t) dx .

Therefore

|T (s1)(t) − T (s2)(t)| ≤ |α(t)|‖v‖∞,t +M(β(t) − α(t))2

≤ (b+MT )M‖s1 − s2‖∞,t +M‖s1 − s2‖2
∞,t , (5.7)

and the continuity of T : Σ → Σ is proven. By Schauder’s theorem, it fol-
lows that a fixed point of T exists, and thus existence of a solution. Uniqueness
might be proven invoking the monotone dependence result given below (see The-
orem 6.1).
However, mainly with the purpose of elucidating the role played in the theory of
free boundary problems by local integral estimates, we proceed to give a direct
proof of uniqueness of solutions. More explicitly, we prove the contractive char-
acter (for small t) of T , thereby obtaining existence and uniqueness of a fixed
point.

5.1. Local estimates vs the maximum principle. Estimates like (5.6), ob-
tained through the maximum principle, have the advantage of providing an im-
mediate sup estimate of the solution in the whole domain of definition. However,
the bound they give may be too rough, at least in some regions of the domain.
Consider for example, in the setting above, a point (b/2, ε), with ε � 1. The
maximum principle predicts for v(b/2, ε) a bound of order M‖s1 − s2‖∞,ε, that
is, obviously, the same bound satisfied by the boundary data for v. On the other
hand, taking into account (5.3), (5.4) one might expect v(b/2, ε) to be much
smaller than v(α(ε), ε).
This is indeed the case, as we show below. In order to do so, we exploit local
integral estimates of the solution, that is, estimates involving only values of v in
the region of interest, in this case, away from the boundary. We aim at proving
that T is a contraction, that is,

‖T (s1) − T (s2)‖∞,t ≤ d‖s1 − s2‖∞,t , (5.8)

with d < 1 for small enough t. A quick glance at (5.7) shows that (5.8) does not,
indeed, follow from there (unless bM < 1). This failure is due only to the term
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originating from the estimate of

α(t)
∫

0

v(x, t) dx .

Thus, a better estimate of this integral is needed.
A key step in any local estimation is a good choice of cut off functions. These
are, typically, non negative smooth functions equal to 1 in the region we want to
single out, and identically vanishing away from it.
Let b/2 > δ > 0, and define the cut off function ζ(x), such that

ζ(x) = 1 , 0 ≤ x ≤ b− 2δ , ζ(x) = 0 , b− δ ≤ x , −2

δ
≤ ζx(x) ≤ 0 .

Multiply (5.2) by vζ2 and integrate by parts in Qb,t = [0, b] × [0, t]. We get

0 =

∫∫

Qb,t

(vτvζ
2 − vxxvζ

2) dxdτ

=
1

2

b
∫

0

v(x, t)2ζ(x)2 dx+

∫∫

Qb,t

v2
xζ

2 dxdτ + 2

∫∫

Qb,t

vvxζζx dxdτ , (5.9)

whence (using the inequality 2ab ≤ εa2 + b2/ε, ε > 0)

1

2

b
∫

0

v(x, t)2ζ(x)2 dx+

∫∫

Qb,t

v2
xζ

2 dxdτ ≤ 2

∫∫

Qb,t

|vx| |v| |ζx|ζ dxdτ

≤ 2

∫∫

Qb,t

v2ζ2
x dxdτ +

1

2

∫∫

Qb,t

v2
xζ

2 dxdτ .

By absorbing the last integral into the left hand side, we find

b
∫

0

v(x, t)2ζ(x)2 dx+

∫∫

Qb,t

v2
xζ

2 dxdτ ≤ 4

∫∫

Qb,t

v2ζ2
x dxdτ

= 4

t
∫

0

b−δ
∫

b−2δ

v2ζ2
x dxdτ ≤ 16

δ2
tδ‖v‖2

∞,t =
16

δ
t‖v‖2

∞,t . (5.10)

Let us now go back to

T (s1)(t) − T (s2)(t) = −
α(t)
∫

0

v(x, t) dx+ (−1)i

β(t)
∫

α(t)

ui(x, t) dx

=

b−2δ
∫

0

v(x, t) dx+

α(t)
∫

b−2δ

v(x, t) dx+ (−1)i

β(t)
∫

α(t)

ui(x, t) dx .
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Use Hölder’s inequality and (5.10) to bound the integral over (0, b − 2δ) (recall
that ζ ≡ 1 there), and find

|T (s1)(t) − T (s2)(t)| ≤
(

b−2δ
∫

0

v(x, t)2 dx

)1/2√
b+ (α(t) − b+ 2δ)‖v‖∞,t

+M(β(t) − α(t))2 ≤
√
b

4√
δ

√
t‖v‖∞,t + (Mt+ 2δ)‖v‖∞,t +M(β(t) − α(t))2 .

Take now δ =
√
t (t is fixed in this argument), and apply again the sup estimate

(5.6), finally obtaining

‖T (s1) − T (s2)‖∞,t ≤
{

4M
√
b

4
√
t + M(Mt + 2

√
t) + M2t

}

‖s1 − s2‖∞,t .

Clearly, for t = t0(M, b), T is a contractive mapping.

5.2. Exercises.

5.1. In Subsection 5.1 we proved existence and uniqueness of a fixed point of
T in a small time interval (locally in time). Show how the argument can be
completed to give existence and uniqueness of a fixed point in any time interval
(global existence).

5.2. Why uniqueness of solutions (u, s) with s ∈ Σ is equivalent to uniqueness of
solutions in the class of Definition 2.1, without further restrictions?

5.3. Give an interpretation of (5.1) as an energetical balance.

5.4. Prove that T has the property (see also Figure 4)

s1(t) < s2(t) , 0 < t < T =⇒ T (s1)(t) > T (s2)(t) , 0 < t < T .

5.5. Extend the proof of existence and uniqueness of solutions to the case when
h ≥ 0. What happens if h ≡ 0, u0 ≡ 0?

5.6. To carry out rigorously the calculations in (5.9) actually we need an ap-
proximation procedure: i.e., we need first perform integration in a smaller 2-
dimensional domain, bounded away from the boundaries x = 0, t = 0. Recognize
the need of this approach, and go over the (easy) details.

6. Qualitative behaviour of the solution

Theorem 6.1. (Monotone dependence) Let (ui, si) be solutions of (2.9)–
(2.14), i = 1, 2, respectively corresponding to data h = hi, b = bi, u0 = u0i.
Assume both sets of data satisfy (2.15), (2.16). If

h1(t) ≤ h2(t) , 0 < t < T ; b1 ≤ b2 ; u01(x) ≤ u02(x) , 0 < x < b1 ; (6.1)

then
s1(t) ≤ s2(t) , 0 < t < T . (6.2)

Proof. 1) Let us assume first b1 < b2. Reasoning by contradiction, assume

t̄ = inf{t | s1(t) = s2(t)} ∈ (0, T ) .

Then the function v = u2 − u1 is strictly positive in

{0 < t < t̄ , 0 < x < s1(t)} ,
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t

xb

T (s) = s

x = σ(t) x = T (σ)(t)

Figure 4. Behaviour of the transform T

by virtue of the strong maximum principle and Hopf’s lemma. Indeed,

v(s1(t), t) > 0 , 0 < t < t̄ .

Then v attains a minimum at (s1(t̄), t̄) = (s2(t̄), t̄), where

v(s1(t̄), t̄) = 0 .

Thus, due to Hopf’s lemma,

vx(s1(t̄), t̄) < 0 .

But we compute

vx(s1(t̄), t̄) = u2x(s2(t̄), t̄) − u1x(s1(t̄), t̄) = −ṡ2(t̄) + ṡ1(t̄) .

Hence ṡ2(t̄) > ṡ1(t̄), which is not consistent with the definition of t̄.
2) Assume now b1 = b2. Let us extend the data u02 to zero over (b, b + δ),
where 0 < δ < 1 is arbitrary. Let (uδ, sδ) be the solution of problem (2.9)–(2.14)
corresponding to the data h = h2, b = b2 + δ, u0 = u02. Then, by the first part
of the proof, s2 < sδ, s1 < sδ, and for all 0 < t < T

sδ(t) − s2(t) = δ −
s2(t)
∫

0

[uδ − u2](x, t) dx−
sδ(t)
∫

s2(t)

uδ(x, t) dx ≤ δ .

Therefore sδ ≤ s2 + δ, so that s1 < sδ ≤ s2 + δ. On letting δ → 0 we recover
s1 ≤ s2. �

Let us investigate the behaviour of the solution of the Stefan problem for large
times. In doing so, we of course assume that T = ∞. Note that the result
of existence and uniqueness applies over each finite time interval; a standard
extension technique allows us to prove existence and uniqueness of a solution
defined for all positive times.
Owing to Proposition 4.2, we have

s(t) ≤ S , 0 < t <∞ =⇒ u(x, t) ≤MS , in Qs,∞. (6.3)
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Moreover, s being monotonic, certainly there exists

s∞ = lim
t→∞

s(t) . (6.4)

Theorem 6.2. Let (u, s) be the solution of Theorem 5.1. Then

s∞ = lim
t→∞

s(t) = b+

b
∫

0

u0(x) dx+

∞
∫

0

h(t) dt . (6.5)

Proof. 1) Assume first
∞

∫

0

h(t) dt = +∞ . (6.6)

We only need show s is unbounded. Let us recall that, for all t > 0,

s(t) = b+

b
∫

0

u0(x) dx+

t
∫

0

h(τ) dτ −
s(t)
∫

0

u(x, t) dx . (6.7)

From (6.3), it follows that, if s is bounded over (0,∞), then u is also bounded
over (0,∞). This is clearly inconsistent with (6.7), when we keep in mind (6.6).
2) Assume

∞
∫

0

h(t) dt < +∞ . (6.8)

The balance law (6.7), together with u > 0, immediately yields

s(t) < b+

b
∫

0

u0(x) dx+

∞
∫

0

h(t) dt < +∞ . (6.9)

Then we have s(t) → s∞ < ∞; it is only left to identify s∞ as the quantity
indicated above. Owing to (6.7) again, we only need show

lim
t→∞

s(t)
∫

0

u(x, t) dx = 0 . (6.10)

On multiplying (2.9) by u and integrating by parts in Qs,t, we get

1

2

s(t)
∫

0

u(x, t)2 dx+

∫∫

Qs,t

u2
x dxdτ =

1

2

b
∫

0

u0(x)
2 dx+

t
∫

0

u(0, τ)h(τ) dτ . (6.11)

Recalling (6.3) and (6.9), the last integral in (6.11) is majorised by
∞

∫

0

Ms∞h(τ) dτ <∞ .

Thus a consequence of (6.11) is
∫∫

Qs,∞

ux(x, t)2 dxdt < +∞ . (6.12)
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Elementary calculus then shows that

∫∫

Qs,∞

u(x, t)2 dxdt =

∫∫

Qs,∞

[

s(t)
∫

x

uξ(ξ, t) dξ

]2

dxdt

≤ s∞

∫∫

Qs,∞

s(t)
∫

x

uξ(ξ, t)
2 dξ dxdt ≤ s2∞

∫∫

Qs,∞

uξ(ξ, t)
2 dξ dt <∞ .

Then there exists a sequence {tn}, tn → ∞, such that

s(tn)
∫

0

u(x, tn)2 dx→ 0 .

But the function

t 7→
s(t)
∫

0

u(x, t)2 dx ,

when we take into account (6.11), is easily seen to have limit as t → ∞, so that
this limit is 0. By Hölder’s inequality,

s(t)
∫

0

u(x, t) dx ≤ √
s∞

[

s(t)
∫

0

u(x, t)2 dx

]1/2

→ 0 , t→ ∞ ,

completing the proof of (6.10). �

6.1. Exercises.

6.1. Find conditions ensuring that the inequality in (6.2) is strict.

6.2. Discuss the necessity of assumptions (2.15), (2.16) in Theorem 6.1.

7. Regularity of the free boundary

The approach in this Section is taken from [16], and provides an example of
‘bootstrap’ argument, i.e., of an inductive proof where any given smoothness of
the solution allows us to prove even more regularity for it. Our first result will
become the first step in the induction procedure, and is however required to prove
Lemma 4.1.

Lemma 7.1. Let u ∈ C2,1(Qs,T ) ∩ C(Qs,T ), where s ∈ Lip([0, T ]), and s(t) > 0
for 0 ≤ t ≤ T . Assume u fulfils

ut − uxx = 0 , in Qs,T , (7.1)

u(s(t), t) = 0 , 0 ≤ t ≤ T . (7.2)

Then for each small enough ε > 0, ux is continuous in Pε, where Pε = {(x, t) |
ε < x < s(t) , ε < t < T}.
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Proof. The proof is based on standard local regularity estimates for solutions
of parabolic equations. Introduce the following change of variables

{

y = x
s(t) ,

τ = t ;
v(y, τ) = u(ys(τ), τ) .

The set Qs,T is mapped onto R = (0, 1) × (0, T ), where v solves

vτ − 1

s(τ)2
vyy −

ṡ(τ)

s(τ)
yvy = 0 , in R, (7.3)

v(1, τ) = 0 , 0 ≤ τ ≤ T . (7.4)

More explicitly, (7.3) is solved a.e. in R, as v is locally a Sobolev function in R.
Classical results, see [11] Chapter IV, Section 10, imply that for any fixed ε > 0,

vτ , vy , vyy ∈ Lq((ε, 1) × (ε, T )) ,

for all q > 1. Then we use the embedding Lemma 3.3 of [11] Chapter II, to infer
that, for q > 3,

vy ∈ Hα, α
2 ([ε, 1] × [ε, T ]) , (7.5)

where α = 1−3/q (see also Remark 11.2 of [11], p. 218; the space Hα, α
2 is defined

in Appendix C). Since

ux(x, t) =
1

s(t)
vy

( x

s(t)
, t

)

,

the result follows. �

Our next result implies that the free boundary in the Stefan problem (2.9)–(2.14)
is of class C∞(0, T ).

Theorem 7.1. Assume u and s are as in Lemma 7.1, and moreover

ux(s(t), t) = cṡ(t) , 0 < t < T , (7.6)

where c 6= 0 is a given constant. Then s ∈ C∞(0, T ).

Proof. For v defined as in the proof of Lemma 7.1, we rewrite (7.6) as

ṡ(τ) =
1

cs(τ)
vy(1, τ) , 0 < τ < T . (7.7)

Choose α ∈ (0, 1). Then (7.5) and (7.7) yield at once

ṡ ∈ Hα, α
2 ([ε, 1] × [ε, T ]) , for each fixed ε > 0. (7.8)

Next we make use of the following classical result:

If the coefficients in (7.3) (i.e., ṡ), are of class

Hm+α, m+α
2 ([ε, 1] × [ε, T ]), then v is of class

H2+m+α, 2+m+α
2 ([2ε, 1] × [2ε, T ]).

(7.9)

Here m ≥ 0 is any integer. We prove by induction that for all m ≥ 0

ṡ ∈ Hm+α, m+α
2 ([ε, 1] × [ε, T ]) , for each fixed ε > 0. (7.10)

We already know this is the case when m = 0, from (7.8). Assume then (7.10) is
in force for a given m ≥ 0. Then, owing to (7.9),

v ∈ H2+m+α, 2+m+α
2 ([ε, 1] × [ε, T ]) , for each fixed ε > 0. (7.11)
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Therefore, by the definition of the spaces Hλ, λ
2 (see Appendix C), we have that

vy ∈ H1+m+α, 1+m+α
2 ([ε, 1] × [ε, T ]) , for each fixed ε > 0. (7.12)

Thus, taking (7.7) into account,

ṡ ∈ H1+m+α, 1+m+α
2 ([ε, 1] × [ε, T ]) , for each fixed ε > 0 (7.13)

(we have used also (1.1) of Appendix C). The induction step, and the proof, are
completed. �





CHAPTER 2

Weak formulation of the Stefan problem

In this chapter we consider the weak formulation of the Stefan problem. As in
other PDE problems, the weak formulation actually takes the form of an integral
equality. It is to be noted that any explicit reference to the free boundary is
dropped from the weak formulation.
We’ll comment on the modeling differences between the classical and the weak
formulations, and give the basic mathematical results for the latter.
We work in the multi-dimensional case of a spatial domain Ω ⊂ R

N . We still
denote the temperature by u in this chapter.

1. From the energy balance to the weak formulation

The heat equation
ut = div(Du) + f , (1.1)

amounts to an energy balance equating the local change in time of ‘energy’ (ex-
pressed by ut; various physical constants are normalized to 1 here), to the diver-
gence of the ‘energy flux’, plus the contribution of volumetric sources, represented
by f .
The weak formulation is based on the extension of this idea to the case where the
energy exhibits a jump at the critical temperature, due to the change of phase,
as shown in Figure 1. Then we write (formally)

∂

∂t
v = div(Du) + f , (1.2)

where the ‘energy’ (more exactly, the enthalpy) v jumps at the change of phase.

v

u

E(u)
u

v

ϑ(v)

Figure 1. Enthalpy v as a graph of temperature u, and viceversa.

Specifically, solid at the critical temperature u = 0 corresponds to v = 0, while
liquid at temperature u = 0 corresponds to v = 1 (we assume the latent heat

19
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is normalized to unity). Where 0 < v < 1, therefore, change of phase is taking
place, and the corresponding region is filled with a material whose state is neither
pure solid nor pure liquid. Such regions are usually called mushy regions.
The standard heat equation is assumed to hold in the pure phases (i.e., where
v > 1 or v < 0). This essentially amounts to

v =

{

u , u < 0 ,

u+ 1 , u > 0 .
(1.3)

Where 0 < v < 1, u must equal the critical temperature u = 0. It is therefore
convenient to express the relation between v and u as follows

u(x, t) =











v(x, t) , v(x, t) ≤ 0 ,

0 , 0 < v(x, t) < 1 ,

v(x, t) − 1 , v(x, t) ≥ 1 .

(1.4)

Note that v (not u) carries all the information on the state of the material. We
can rephrase (1.4) in the language of graphs:

v ∈ E(u) , (1.5)

where E is the graph defined by

E(s) =











s , s < 0 ,

[0, 1] , s = 0 ,

s+ 1 , s > 0 .

(1.6)

When v, u satisfy (1.5), we say that v is an admissible enthalpy for u, or that u
is an admissible temperature for v.

Obviously, (1.2) can not be given a classical pointwise interpretation, since v
is general not continuous (see (1.5)). Following an usual procedure, we obtain the
weak formulation of (1.2) on multiplying both sides of it by a testing function
ϕ ∈ C∞

0 (QT ), and integrating (formally) by parts. In this way some of the
derivatives appearing in (1.2) are unloaded on the smooth testing function. We
obtain

∫∫

QT

{−vϕt +Du ·Dϕ}dxdt =

∫∫

QT

fϕdxdt . (1.7)

Note that this formulation requires only we give a meaning to the first spatial
derivatives of u (for example, u may be a Sobolev function). The complete
formulation of the Stefan problem will be given below (see Section 3).
The notion of weak solutions to the Stefan problem was introduced in [14], [9].

2. Comparing the weak and the classical formulations

2.1. The spatial normal. Let S be a smooth surface of R
N+1, which we may

assume for our purposes to be locally represented in the form

Φ(x, t) = 0 , (2.1)

with Φ ∈ C1(RN+1), and DΦ 6= 0 everywhere. Here we denote by DΦ the
gradient of Φ with respect to x, and by ∇Φ = (DΦ,Φt) the complete gradient of
Φ with respect to (x, t).
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We may think of S as of a moving surface in R
N . More exactly, at each fixed

instant t the surface takes the position

S(t) = {x ∈ R
N | Φ(x, t) = 0} .

A moving point x(t) belongs to S(t) for all t if and only if

Φ(x(t), t) = 0 , for all t,

which is equivalent, up to the choice of suitable initial data, to

DΦ(x(t), t) · ẋ(t) + Φt(x(t), t) = 0 , for all t.

Define the spatial normal on S by

n =
DΦ(x(t), t)

|DΦ(x(t), t)| . (2.2)

The spatial normal, of course, is defined up to a change in sign. We have for all
motions t 7→ x(t) as above

ẋ(t) · n = − Φt(x(t), t)

|DΦ(x(t), t)| .

This shows that, at a given position on S, the component of the velocity ẋ along
the spatial normal is independent of the motion x. This quantity is referred to
as the normal velocity V of S. Therefore, we have by definition

V (x, t) = − Φt(x(t), t)

|DΦ(x(t), t)| .

Again, note that V is defined up to a change in sign.
The complete normal to S at (x, t) is clearly ν = (νx, νt), where

νx =
DΦ(x, t)

|∇Φ(x, t)| = n
|DΦ(x, t)|
|∇Φ(x, t)| ,

νt =
Φt(x, t)

|∇Φ(x, t)| .

2.2. Smooth weak solutions, with smooth interfaces, are classical so-
lutions. Let us assume that a function u satisfies

u > 0 , in A,

u < 0 , in B,

and that u = 0 on the common portion of the boundaries of the open sets A,
B ⊂ R

N+1. We assume this portion to be a smooth surface S, with complete
normal ν = (νx, νt) and spatial normal n, according to the notation above. Let
ν be the outer normal to B. Moreover assume

u , f ∈ C(A ∪B) , u|A ∈ C2,1(A) , u|B ∈ C2,1(B) .

Finally, assume v (defined as in (1.3)) is a weak solution of (1.7), for any smooth
ϕ whose support is contained in the interior of A ∪ B ∪ S. It will be apparent
from our calculations that the definition of v at u = 0 is not relevant, in this case,
essentially because the N + 1-dimensional measure of the free boundary u = 0 is
zero.
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By direct calculation we have, owing to the regularity of u and of v,
∫∫

A

vϕt dxdt = −
∫

S

ϕE(0+)νt dσ −
∫∫

A

vtϕdxdt ,

∫∫

B

vϕt dxdt =

∫

S

ϕE(0−)νt dσ −
∫∫

B

vtϕdxdt .

On adding these two equalities we find, recalling the definition of E,
∫∫

A∪B

vϕt dxdt = −
∫

S

ϕνt dσ −
∫∫

A∪B

utϕdxdt , (2.3)

since vt = ut both in A and in B. The space part of the differential operator in
(1.7) is treated similarly

∫∫

A

Du ·Dϕdxdt = −
∫

S

Du · νx dσ −
∫∫

A

ϕ∆udxdt ,

∫∫

B

Du ·Dϕdxdt =

∫

S

Du · νx dσ −
∫∫

B

ϕ∆ udxdt .

Again, on adding these two equalities we find
∫∫

A∪B

Du ·Dϕdxdt =

∫

S

[DuB −DuA] · νx dσ −
∫∫

A∪B

ϕ∆udxdt , (2.4)

where we denote by DuA [DuB] the trace on S of the spatial gradient of the
restriction of u to A [B]. Combining (2.3) with (2.4) we arrive at

∫∫

A∪B

fϕdxdt =

∫∫

A∪B

{−vϕt +Du ·Dϕ}dxdt =

∫

S

ϕ[νt +DuB ·νx−DuA ·νx] dσ

+

∫∫

A∪B

ϕ{ut − ∆u}dxdt . (2.5)

Taking an arbitrary smooth ϕ supported in A, we immediately find that in A

ut − ∆u = f . (2.6)

Of course the same PDE holds in B, by the same token.
Hence, we may drop the last integral in (2.5). Then take ϕ = ϕε, where for all
ε > 0

ϕε|S = ψ ∈ C1
0 (S) ; |ϕε| ≤ 1 ; |suppϕε|N+1 → 0 , as ε→ 0.

Then, taking ε→ 0 in (2.5) we get
∫

S

ψ[νt +DuB · νx −DuA · νx] dσ = 0 .

As ψ is reasonably arbitrary, it follows that on S

DuB · νx −DuA · νx = −νt .

This condition can be rewritten as

V = DuB · n −DuA · n , (2.7)
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and is the multi-dimensional equivalent of the Stefan condition (1.5) of Chapter 1.
In fact, it could be directly derived from an energetical balance argument, as we
did for (1.5) of Chapter 1. In this last approach, the weak formulation of the
Stefan problem follows from (2.7) and from the heat equation which we assume
to hold in A and in B separately: we only need go over our previous calculations
in reverse order.
The case where either v ≡ 1 in A or v ≡ 0 in B can be treated similarly.

2.3. Some smooth weak solutions are not classical solutions. Let us con-
sider the following problem

vt − uxx = 1 , in QT = (0, 1) × (0,+∞), (2.8)

u(x, 0) = −1 , 0 < x < 1 , (2.9)

ux(0, t) = 0 , 0 < t , (2.10)

ux(1, t) = 0 , 0 < t (2.11)

(see [15]). We perform only a local analyis of the problem in the interior of the
domain QT , giving for granted the solutions below actually take the boundary
data (in a suitable sense).
If, instead of (2.8), the standard heat equation

ut − uxx = 1

was prescribed, clearly the solution to the initial value boundary problem would
be

u(x, t) = −1 + t , 0 < x < 1 , 0 < t .

Let us check that this function can not be a solution to the Stefan problem above.
Otherwise, we would have

v(x, t) = −1 + t , 0 < t < 1 ; v(x, t) = t , 1 < t .

Thus for every ϕ ∈ C∞
0 (QT ),

∫∫

QT

{−vϕt + uxϕx}dxdt = −
∫∫

QT

vϕt dxdt =

∫∫

QT

ϕdxdt+

1
∫

0

ϕ(x, 1) dx .

The last integral in this equality is evidently spurious, on comparison with the
weak formulation (1.7).
Let us instead check that a solution (actually the unique solution, see Section 4)
to (2.8)–(2.11) is given by

v(x, t) = −1 + t , 0 < t ; u(x, t) =











−1 + t , 0 < t < 1 ,

0 , 1 < t < 2 ,

−2 + t , 2 < t .

It is immediately checked that (1.7) is fulfilled. We still have to check that (1.5)
holds, that is that v is an admissible enthalpy for u. Again, this follows immedi-
ately from the definitions.
The above can be interpreted as follows: the enthalpy v grows in time accordingly
to the prescribed volumetric source; the change of phase takes place over the time
interval 1 < t < 2, because this is the time interval where v ∈ (0, 1); over this
time interval, therefore, the temperature equals the critical temperature u = 0;
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for all other times, (2.8) coincides with the standard heat equation, and thus u
is simply the solution to a suitable problem for the heat equation.
Note that the set u = 0 has in this example positive measure, in contrast with the
classical formulation of Chapter 1. See also [8], [1] for a discussion of existence
and non existence of mushy regions in weak solutions to change of phase problems.

2.4. Without sign restrictions, classical solutions may not be weak
solutions. Let us go back to problem (2.9)–(2.14) of Chapter 1, where we now
assume u0 ∈ C1([0, b]), u0(b) = 0, u0(x) < 0 for 0 ≤ x < b, and, e.g., h ≡ 0. It
can be shown (see [6]) that this problem has a classical solution, in the sense of
Definition 2.1 of Chapter 1, at least for a small enough T > 0. Note that the
Stefan condition (2.12) of Chapter 1 has now the ‘wrong’ sign (cf. Exercise 1.2
of Chapter 1). Therefore the classical solution at hand is not a solution of the
weak formulation. Indeed, otherwise it would be a smooth weak solution with
a smooth free boundary, and we would be able to infer the Stefan condition as
above. However, as shown above, this condition would be the one ‘correctly’
corresponding to the actual sign of the solution, and therefore would be different
from the one we prescribed.
More generally, no undercooling is possible in the weak formulation introduced
here. In fact, the liquid and the solid phases are identified solely by the value of
v. Thus, whenever u changes its sign a change of phase must take place. This
is not the case in the classical formulation, where the liquid and solid phases are
essentially identified by a topological argument, as the two connected components
of the domain, separated by the special level surface which is defined as the free
boundary. Other level surfaces corresponding to the value u = 0 may exist inside
both phases.

2.5. Exercises.

2.1. Assume that the interior M of the region {u = 0} is non empty, where u is
given by (1.4), and v satisfies (1.7). Show that, in a suitable weak sense, vt = f
in M .

3. Definition of weak solution

Let us define the ‘inverse’ of the graph E in (1.6). This is the function ϑ given
by

ϑ(r) =











r , r ≤ 0 ,

0 , 0 < r < 1 ,

r − 1 , 1 ≤ r .

(3.1)

Let QT = Ω × (0, T ), where Ω ⊂ R
N is a bounded open set with boundary of

class C∞.
Let us consider the Stefan problem

vt − ∆ϑ(v) = f(v) , in QT , (3.2)

v(x, 0) = v0(x) , x ∈ Ω , (3.3)

∂ϑ(v)

∂n
= 0 , on ∂Ω × (0, T ), (3.4)
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where v0 ∈ L∞(Ω) and f ∈ L∞(R) ∩ C∞(R) are given functions. We assume
that for a fixed µ > 0

|f(v1) − f(v2)| ≤ µ|v1 − v2| , for all v1, v2 ∈ R. (3.5)

Definition 3.1. A function v ∈ L∞(QT ) is a weak solution to (3.2)–(3.4) if

u := ϑ(v) ∈ L2(0, T ;W 2
1 (Ω)) , (3.6)

and for all ϕ ∈W 2
1 (QT ) such that ϕ(x, T ) = 0 we have

∫∫

QT

{−vϕt +Du ·Dϕ}dxdt =

∫

Ω

v0(x)ϕ(x, 0) dx+

∫∫

QT

f(v)ϕdxdt . (3.7)

Note that equation (3.7) is obtained integrating formally by parts equation (3.2),
after multiplying it by a ϕ as above.
Of course the structure of the problem could be generalized; for example the
smoothness required of ∂Ω can be reduced by approximating Ω with more regular
domains (but (3.5) is going to play an essential role). However we aim here at
showing some basic techniques in the simple setting above, which is suitable for
our purposes.

Remark 3.1. Actually, if v is a weak solution to the Stefan problem (in a sense
similar to ours), the corresponding temperature u is continuous in QT (see [4]),
a fact which however we won’t use here.

3.1. Exercises.

3.1. Assume u ∈ C(QT ) (see also Remark 3.1). Show that u is of class C∞ where
it is not zero.

4. Uniqueness of the weak solution

4.1. A different notion of weak solution. If we assume in (3.7) that

i) ϕ ∈W 2
2,1(QT ) ; ii) ϕ(x, T ) = 0 ; iii)

∂ϕ

∂n
= 0 , on ∂Ω × (0, T );

(4.1)
we immediately obtain, on integrating once by parts,

−
∫∫

QT

{vϕt + u∆ϕ}dxdt =

∫

Ω

v0(x)ϕ(x, 0) dx+

∫∫

QT

f(v)ϕdxdt . (4.2)

We need drop the requirement ϕ(x, T ) = 0, for technical reasons. This can be
done as follows. Choose a ϕ satisfying i), iii) of (4.1), but not necessarily ii). Fix
t ∈ (0, T ), and define for 0 < ε < t (see Figure 2)

χε(τ) = min
(

1,
1

ε
(t− τ)+

)

.

The function ϕχε satisfies requirement (4.1) in full, so that it can be taken as a
testing function in (4.2). Let us rewrite it as

−
∫∫

QT

v[ϕχε]τ dxdτ =

∫

Ω

v0(x)ϕ(x, 0) dx+

∫∫

QT

{u∆ϕ+ f(v)ϕ}χε dxdτ .
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χε(τ)

τ

1

t− ε t

Figure 2. The auxiliary function χε.

The behaviour of the right hand side as ε → 0 is obvious. The left hand side
equals

−
∫∫

QT

vϕτχε dxdτ +
1

ε

t
∫

t−ε

∫

Ω

v(x, τ)ϕ(x, τ) dx dτ .

On letting ε→ 0 in this quantity we get, for almost all t ∈ (0, T )

−
∫∫

Qt

vϕτ dxdτ +

∫

Ω

v(x, t)ϕ(x, t) dx .

Thus the definition of weak solution given above actually implies the new (and
weaker) one

Definition 4.1. A function v ∈ L∞(QT ) is a weak solution of class L∞ to

(3.2)–(3.4) if for all ϕ ∈W 2
2,1(QT ) such that ∂ϕ

∂n
= 0 on ∂Ω × (0, T ) we have

∫

Ω

v(x, t)ϕ(x, t) dx−
∫∫

Qt

{vϕτ + u∆ϕ}dxdτ

=

∫

Ω

v0(x)ϕ(x, 0) dx+

∫∫

Qt

f(v)ϕdxdτ , (4.3)

for almost all t ∈ (0, T ). Here u = ϑ(v).

Note that we dropped in Definition 4.1 any regularity requirement for v (excepting
boundedness).

Remark 4.1. It follows from (4.3) that the function

t 7→
∫

Ω

v(x, t)ϕ(x, t) dx

is actually continuous over [0, T ], up to modification of v over sets of zero measure.
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4.2. Continuous dependence on the initial data. We are now in a position
to prove

Theorem 4.1. (Continuous dependence on the data) Let v1, v2 be two
weak solutions of class L∞ to (3.2)–(3.4), in the sense of Definition 4.1 (or two
weak solutions in the sense of Definition 3.1), corresponding to bounded initial
data v01, v02 respectively. Then, for almost all 0 < t < T

∫

Ω

|v1(x, t) − v2(x, t)| dx ≤ eµt

∫

Ω

|v01(x) − v02(x)| dx . (4.4)

Corollary 4.1. (Uniqueness) Let v1, v2 be two weak solutions of class L∞ to
(3.2)–(3.4), in the sense of Definition 4.1 (or two weak solutions in the sense of
Definition 3.1), corresponding to the same bounded initial data. Then v1 ≡ v2 in
QT .

Remark 4.2. (Solutions of class L1) Both Theorem 4.1 and its immediate
Corollary 4.1 actually hold for a more general class of weak solutions, obtained
replacing the requirement v ∈ L∞(QT ) in Definition 4.1 with v ∈ L1(QT ). Also
the initial data may be selected out of L1(Ω). In this connection, in order to
keep the integrals in (4.3) meaningful, we have to assume that ϕ is a Lipschitz

continuous function in QT , with ϕxixj
∈ L∞(QT ), i, j = 1 , . . . , N , and ∂ϕ

∂n
= 0

on ∂Ω × (0, T ).
Once existence of solutions in the sense of Definition 4.1 has been obtained,
existence of solutions of class L1 can be proven as follows. Assume v0 ∈ L1(Ω),
and vi

0 → v0 in L1(Ω), vi
0 ∈ L∞(Ω). Note that the solutions vi of class L∞

corresponding to the approximating initial data vi
0 satisfy (4.4). Therefore {vi}

is a Cauchy sequence in L1(QT ), and we may assume it converges to a v ∈ L1(QT )
both in the sense of L1(QT ), and a.e. in QT . It is now a trivial task to take the
limit in the weak formulation (4.3) satisfied by vi and obtain the corresponding
formulation for v.

Standard references for the material in this Section are [11], Chapter V, Section 9,
and [12], whose approach we follow, with some modifications.

4.3. Proof of Theorem 4.1. Fix t ∈ (0, T ). Subtract from each other the two
equations (4.3) written for the two solutions, and obtain

∫

Ω

[v1(x, t) − v2(x, t)]ϕ(x, t) dx−
∫∫

Qt

(v1 − v2)[ϕτ + a(x, t) ∆ϕ] dxdτ

=

∫

Ω

[v01(x) − v02(x)]ϕ(x, 0) dx+

∫∫

Qt

[f(v1) − f(v2)]ϕdxdτ , (4.5)

where we set

a(x, t) =
ϑ(v1(x, t)) − ϑ(v2(x, t))

v1(x, t) − v2(x, t)
, v1(x, t) 6= v2(x, t) ,

a(x, t) = 0 , v1(x, t) = v2(x, t) .

Due to the definition of ϑ we have

0 ≤ a(x, t) ≤ 1 , in QT . (4.6)
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Next choose ϕ = ϕε, where for each ε > 0, ϕε is the solution of

ϕετ + (aε(x, t) + ε) ∆ϕε = 0 , in Qt, (4.7)

ϕ(x, t) = Φ(x) , x ∈ Ω , (4.8)

∂ϕ

∂n
= 0 , on ∂Ω × (0, t). (4.9)

Here Φ ∈ C∞
0 (Ω), |Φ(x)| ≤ 1, and aε ∈ C∞(QT ) satisfies

0 ≤ aε ≤ 1 , a.e. in QT ; ‖aε − a‖2 ≤ ε . (4.10)

Some relevant properties of ϕε are collected in Lemma 4.1 below. Note that (4.8)
is the initial value for the ‘reverse’ parabolic problem solved by ϕε. By virtue of
(4.15) we have as ε→ 0

∫∫

Qt

ε|∆ϕε| dxdτ ≤
(

∫∫

Qt

εdxdτ

)1/2(∫∫

Qt

ε(∆ϕε)
2 dxdτ

)1/2

≤
√

2tε‖DΦ‖2,Ω|Ω|1/2 → 0 ,

as well as (using (4.10))

∫∫

Qt

|aε − a||∆ϕε| dxdτ ≤
(

∫∫

Qt

|aε − a|2
ε

dxdτ

)1/2(∫∫

Qt

ε(∆ϕε)
2 dxdτ

)1/2

≤
√

2ε‖DΦ‖2,Ω → 0 .

Moreover, using (4.7) in (4.5), and (4.16), we get
∫

Ω(t)

[v1 − v2]Φdx =

∫∫

Qt

[a− aε − ε] ∆ϕε[v1 − v2] dxdτ +

∫

Ω

[v01 − v02]ϕε(x, 0) dx

+

∫∫

Qt

[f(v1) − f(v2)]ϕε dxdτ ≤ (‖v1‖∞ + ‖v2‖∞)

∫∫

Qt

[|a− aε| + ε]|∆ϕε| dxdτ

+

∫

Ω

|v01 − v02| dx+ µ

∫∫

Qt

|v1 − v2| dxdτ .

As ε→ 0 this yields

∫

Ω(t)

[v1 − v2]Φdx ≤
∫

Ω

|v01 − v02| dx+ µ

t
∫

0

∫

Ω(τ)

|v1 − v2| dxdτ . (4.11)

Choose now Φ = Φn, where for n→ ∞
Φn(x) → sign

(

v1(x, t) − v2(x, t)
)

, a.e. x ∈ Ω.

On letting n→ ∞ in (4.11) we obtain

∫

Ω(t)

|v1 − v2| dx ≤
∫

Ω

|v01 − v02| dx+ µ

t
∫

0

∫

Ω(τ)

|v1 − v2| dxdτ .

The statement now follows simply invoking Gronwall’s lemma.



5. EXISTENCE OF WEAK SOLUTIONS 29

Lemma 4.1. Let α ∈ C∞(QT ), 0 < ε ≤ α ≤ α0, where ε and α0 are given
constants. Let Φ ∈ C∞

0 (Ω). Then there exists a unique solution ϕ ∈ C∞(QT ) of

ϕt − α∆ϕ = 0 , in QT , (4.12)

ϕ(x, 0) = Φ(x) , x ∈ Ω , (4.13)

∂ϕ

∂n
= 0 , on ∂Ω × (0, T ), (4.14)

such that for all 0 < t < T
∫∫

Qt

(ϕ2
τ + α(∆ϕ)2) dxdτ +

∫

Ω(t)

|Dϕ|2 dx ≤ (α0 + 1)

∫

Ω

|DΦ|2 dx . (4.15)

Moreover
‖ϕ‖∞ ≤ ‖Φ‖∞ . (4.16)

Proof. The existence of a unique solution ϕ ∈ C∞(QT ) to (4.12)–(4.14) is a
classical result. Let us multiply (4.12) by ∆ϕ, and integrate by parts over Qt,
for an arbitrarily fixed t ∈ (0, T ). We find

∫∫

Qt

α|∆ϕ|2 dxdτ =

∫∫

Qt

ϕτ ∆ϕdxdτ = −
∫∫

Qt

Dϕτ ·Dϕdxdτ

=
1

2

∫

Ω

|Dϕ(x, 0)|2 dx− 1

2

∫

Ω

|Dϕ(x, t)|2 dx .

Using again (4.12) we obtain
∫∫

Qt

ϕ2
τ dxdτ =

∫∫

Qt

α2|∆ϕ|2 dxdτ ≤ α0

2

∫

Ω

|Dϕ(x, 0)|2 dx .

Thus, ϕ satisfies the integral estimate (4.15). The bound in (4.16) is an obvious
consequence of the maximum and boundary point principles of Appendix A. �

4.4. Exercises.

4.1. Prove that
Φ ≥ 0 [≤ 0] =⇒ ϕε ≥ 0 [≤ 0]

where ϕε is the solution to (4.7)–(4.9). Use this fact to prove the comparison
result

v01 ≤ v02 in Ω =⇒ v1 ≤ v2 in QT ,

where v1 and v2 are as in Theorem 4.1, provided f ′ ≥ 0.

4.2. If Φ ∈ C∞(Ω), but Φ 6∈ C∞
0 (Ω), ϕ as in Lemma 4.1 need not be even C1(QT ).

Why?

5. Existence of weak solutions

We apply here the ideas of [8], though we approximate the Stefan problem with
smooth parabolic problems, rather than discretizing it in time.

Theorem 5.1. There exists a weak solution v to (3.2)–(3.4), in the sense of
Definition 3.1, satisfying

‖v‖∞ ≤ ‖v0‖∞ . (5.1)
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The proof of this existence result relies on an approximation procedure. Namely,
we approximate (3.2)–(3.4) with a sequence of smoothed problems; the solutions
to these problems in turn approach a solution to the original Stefan problem.
We need a sequence of smooth constitutive functions ϑn ∈ C∞(RN ) approximat-
ing ϑ, such that

1

n
≤ ϑ′n(s) ≤ 1 , s ∈ R ; ϑn → ϑ , uniformly in R. (5.2)

Clearly we may assume

u

v

ϑn(v)

1

v

u

En(u)

1

Figure 3. The approximating functions ϑn and En.

ϑ(s) ≤ ϑn(s) ≤ ϑ(s) +
1

n
, s ∈ R ; ϑ(s) = ϑn(s) = s , s < 0 . (5.3)

Define En as the inverse function of ϑn. Then

En(s) ≤ E(s) , s ∈ R ; E(s) = En(s) = s , s < 0 . (5.4)

Let us also introduce a sequence v0n ∈ C∞
0 (Ω) approximating the initial data as

in

v0n → v0 , a.e. in Ω; ‖v0n‖∞ ≤ ‖v0‖∞ . (5.5)

For each n there exists a unique solution vn ∈ C∞(QT ) to

vnt − ∆ϑn(vn) = f(vn)ηn , in QT , (5.6)

∂ϑn(vn)

∂n
= 0 , on ∂Ω × (0, T ), (5.7)

vn(x, 0) = v0n(x) , in Ω, (5.8)

where ηn ∈ C∞
0 (Ω) is such that

ηn(x) = 1 , dist(x, ∂Ω) >
1

n
; 0 ≤ ηn(x) ≤ 1 , x ∈ Ω .

Let us denote un = ϑn(vn), and rewrite (5.6) as

En(un)t − ∆un = f(vn)ηn , in QT . (5.9)

Owing to the maximum principle (see Theorem 1.2 of Appendix A), we have

‖un‖∞ ≤ ‖vn‖∞ ≤ ‖v0‖∞ + T‖f‖∞ =: M . (5.10)
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5.1. The energy inequality. Multiply (5.9) by un and integrate by parts.
Note that

En(un)tun =
∂

∂t

un
∫

0

E′
n(s)sds ,

and that, if k > 0, taking into account (5.2),

k2

2
≤

k
∫

0

E′
n(s)sds ≤ En(k)k ≤ (k + 1)k .

If k < 0 we simply have
k

∫

0

E′
n(s)sds =

k2

2
.

Therefore we obtain after standard calculations, for each t ∈ (0, T )

1

2

∫

Ω

un(x, t)2 dx+

∫∫

Qt

|Dun|2 dxdτ

≤ 1

2

∫

Ω

|ϑn(v0n)|(|ϑn(v0n)| + 1) dx+

∫∫

Qt

f(vn)ηnun dxdτ

≤ |Ω|
2

(‖v0‖∞ + 1)2 + ‖f‖∞M |Ω|T .

Note that both terms on the leftmost side of this estimate are positive. Drop-
ping either one, taking the supremum in time, and collecting the two bounds so
obtained, we get

sup
0<t<T

∫

Ω

un(x, t)2 dx+

∫∫

QT

|Dun|2 dxdτ ≤ C , (5.11)

where C > 0 is a constant depending on the data of the problem, but not on n.
It follows that we may extract a subsequence, still labelled by n, such that

un → u , Dun → Du , weakly in L2(QT ). (5.12)

Moreover we have
‖u‖∞ ≤M , (5.13)

and

sup
0<t<T

∫

Ω

u(x, t)2 dx+

∫∫

QT

|Du|2 dxdτ ≤ C . (5.14)

We may as well assume

vn → v , weakly in L2(QT ), (5.15)

but note that, due to the nonlinear nature of our problem (i.e., the fact that E
and f are not linear functions), weak convergence is not enough to pass to the
limit in the weak formulation of the approximating problem, i.e., in
∫∫

QT

{−vnϕt+Dun ·Dϕ}dxdt =

∫

Ω

v0n(x)ϕ(x, 0) dx+

∫∫

QT

f(vn)ηnϕdxdt , (5.16)
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where ϕ is any function out of W 2
1 (QT ) with ϕ(x, T ) = 0. For example we do

not know that v is an admissible enthalpy for u. We must therefore obtain some
stronger kind of convergence for the sequence vn, so that, e.g., f(vn) converges
to f(v).
However we do have some compactness in suitable integral norms for the sequence
un, due to (5.11). More specifically, let h ∈ R

N be any given vector with length
0 < |h| < δ, and let k = h/|h|. Setting

Ωδ = {x ∈ Ω | dist(x, ∂Ω) > δ} ,
we calculate, by a standard argument,

T
∫

0

∫

Ωδ

|un(x+ h, t) − un(x, t)| dxdt =

T
∫

0

∫

Ωδ

∣

∣

∣

∣

∣

∣

∣

|h|
∫

0

Dun(x+ sk) · k ds

∣

∣

∣

∣

∣

∣

∣

dxdt

≤
T

∫

0

∫

Ωδ

|h|
∫

0

|Dun(x+ sk)| dsdxdt =

T
∫

0

|h|
∫

0

∫

Ωδ

|Dun(x+ sk)| dxdsdt

≤
T

∫

0

|h|
∫

0

∫

Ω

|Dun(x)| dxdsdt = |h|
T

∫

0

∫

Ω

|Dun(x)| dxdt ≤ C|h| . (5.17)

We have used the fact that x + sk ∈ Ω for all x ∈ Ωδ and all 0 < s < |h|, and
(5.11).

5.2. The BV estimate. Introduce a cut off function ζ ∈ C∞(Ω) such that

ζ(x) ≡ 1 , dist(x, ∂Ω) > 4δ ; ζ(x) ≡ 0 , dist(x, ∂Ω) < 2δ ;

|Dζ| ≤ γ

δ
; |∆ ζ| ≤ γ

δ2
;

where γ does not depend on δ. We may also assume that n > 1/δ, so that ηnζ ≡ ζ
in Ω.
In this Subsection we drop the index n, for ease of notation. Therefore we write
ϑ for ϑn, v for vn, and so on. For a given h ∈ R

N define the testing function

ϕ(x, t) = signε

(

ϑ(v(x+ h, t)) − ϑ(v(x, t))
)

ζ(x) ,

where signε ∈ C∞(R) is a smooth approximation of sign, such that

signε(s) → sign(s) , s ∈ R , sign′
ε ≥ 0

(we set sign(0) = signε(0) = 0). Let us denote

ϕh(x, t) = ϕ(x− h, t) .

If |h| < δ, which we assume from now on, both ϕ and ϕh vanish in a neighbour-
hood of ∂Ω × (0, T ).
Multiply (5.6) by ϕ and integrate by parts, obtaining

∫∫

Qt

vτϕdxdτ +

∫∫

Qt

Dϑ(v) ·Dϕdxdτ =

∫∫

Qt

f(v)ϕdxdτ . (5.18)
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On performing the same operation with ϕh, we obtain

∫∫

Qt

vτ (x, τ)ϕ(x− h, τ) dxdτ +

∫∫

Qt

Dϑ(v(x, τ)) ·Dϕ(x− h, τ) dxdτ

=

∫∫

Qt

f(v(x, τ))ϕ(x− h, τ) dxdτ . (5.19)

Let us change the integration variable in (5.19),

x− h 7→ y .

The domain of integration stays the same (i.e., Qt) because

suppϕh ⊂ QT , suppϕ ⊂ QT .

Still denoting the new variable by x we obtain

∫∫

Qt

vτ (x+ h, τ)ϕ(x, τ) dxdτ +

∫∫

Qt

Dϑ(v(x+ h, τ)) ·Dϕ(x, τ) dxdτ

=

∫∫

Qt

f(v(x+ h, τ))ϕ(x, τ) dxdτ . (5.20)

On subtracting (5.18) from (5.20), and explicitly calculating Dϕ, we arrive at

∫∫

Qt

[vτ (x+ h, τ) − vτ (x, τ)]τϕ(x, τ) dxdτ

+

∫∫

Qt

|Dϑ(v(x+ h, τ)) −Dϑ(v(x, τ))|2 sign′
ε(. . . )ζ dxdτ

+

∫∫

Qt

[Dϑ(v(x+ h, τ)) −Dϑ(v(x, τ))] ·Dζ signε(. . . ) dxdτ

=

∫∫

Qt

[f(v(x+ h, τ)) − f(v(x, τ))]ϕ(x, τ) dxdτ . (5.21)

The second integral in (5.21) may be dropped, since it is non negative. Next note

v(x+ h, τ)
>
=
<
v(x, τ) ⇐⇒ ϑ(v(x+ h, τ))

>
=
<
ϑ(v(x, τ)) ,

as ϑ = ϑn is strictly increasing. Thus, as ε→ 0

signε

(

ϑ(v(x+ h, τ)) − ϑ(v(x, τ))
)

→ sign
(

ϑ(v(x+ h, τ)) − ϑ(v(x, τ))
)

= sign
(

v(x+ h, τ) − v(x, τ)
)

=: σ(x, τ) .
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Finally, we may take the limit ε→ 0 in (5.21), after dropping the second integral
as we said, to find

∫∫

Qt

[vτ (x+ h, τ) − vτ (x, τ)]σ(x, τ)ζ(x) dxdτ

+

∫∫

Qt

[Dϑ(v(x+ h, τ)) −Dϑ(v(x, τ))] ·Dζσ(x, τ) dxdτ

≤
∫∫

Qt

[f(v(x+ h, τ)) − f(v(x, τ))]σ(x, τ)ζ dxdτ . (5.22)

The first integral in (5.22) equals

∫∫

Qt

∂

∂τ
|vτ (x+ h, τ) − vτ (x, τ)|ζ(x) dxdτ

=

∫

Ω

|v(x+ h, t) − v(x, t)|ζ(x) dx−
∫

Ω

|v0(x+ h) − v0(x)|ζ(x) dx .

The second integral in (5.22) equals

∫∫

Qt

D|ϑ(v(x+ h, τ)) − ϑ(v(x, τ))| ·Dζ dxdτ

= −
∫∫

Qt

|ϑ(v(x+ h, τ)) − ϑ(v(x, τ))|∆ ζ dxdτ ,

so that, according to (5.17), its absolute value is majorised by

γ

δ2

∫∫

Ωδ×(0,t)

|ϑ(v(x+ h, τ)) − ϑ(v(x, τ))| dxdτ ≤ C

δ2
|h| .

The third and last integral in (5.22) is bounded simply by taking into account
the Lipschitz continuity of f . Collecting these estimates we find

∫

Ω

|v(x+ h, t) − v(x, t)|ζ(x) dx ≤
∫

Ω

|v0(x+ h) − v0(x)|ζ(x) dx

+
C

δ2
|h| + µ

t
∫

0

∫

Ω

|v(x+ h, τ) − v(x, τ)|ζ(x) dxdτ . (5.23)

By Gronwall’s lemma we conclude that
∫

Ω

|v(x+ h, t) − v(x, t)|ζ(x) dx ≤

eµt

{
∫

Ω

|v0(x+ h) − v0(x)|ζ(x) dx+
C

δ2
|h|

}

(5.24)
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Assume now that the original initial data v0 satisfies for all h ∈ R
N , |h| < δ,

δ > 0,

∫

Ωδ

|v0(x+ h) − v0(x)| dx ≤ Cδ|h| . (5.25)

We may therefore assume the approximating initial data v0n satisfy a similar
inequality (see Lemma 1.1 of Appendix B). This and (5.24) allow us to conclude
that for all 0 < t < T , h ∈ R

N , n ≥ 1,

∫

Ωδ

|vn(x+ h, t) − vn(x, t)| dx ≤ Cδ|h| . (5.26)

Standard (and trivial) results in functional analysis imply that (5.26) is equiva-
lent, since vn ∈ C∞(QT ), to

∫

Ωδ

|Dvn(x, t)| dx ≤ Cδ . (5.27)

Here and above, Cδ denotes a constant depending on δ, but not on n.

Remark 5.1. In general, the L1 estimate (5.26) does not imply for an integrable
function v the existence of the gradient Dv in the sense of Sobolev. This is a
marked difference with the case of similar Lp estimates, with p > 1. Instead,
estimates like (5.26) imply that v is a function of bounded variation, or BV
function, whence the title of this subsection.

5.3. Compactness of vn in L1. In order to obtain the desired compactness
of the sequence {vn}, in L1

loc(QT ), we still have to complement (5.26) with a
similar estimate involving translations in time rather than in space. This bound
will be achieved as a consequence of a theorem by Kruzhkov, which we state and
prove in Appendix B. Essentially, the result states that if we already know some
regularity of the solution to a parabolic equation at each time level, we may infer
some (lesser) regularity in the time variable. The regularity in space is in our
case guaranteed by (5.26). The remarkable input of the theorem is that strong
continuity in an integral norm is a consequence of a notion of weak continuity.
Let g = g(x), g ∈ C1

0 (Ωδ). On multiplying (5.6) by g and integrating over Ω
between t and t+ s, 0 < t < t+ s < T , standard calculations give

∫

Ω

g(x)[vn(x, t+ s) − vn(x, t)] dx = −
t+s
∫

t

∫

Ω

Dg ·Dϑn(vn) dxdτ

+

t+s
∫

t

∫

Ω

f(vn)ηng dxdτ . (5.28)



36 DANIELE ANDREUCCI

Note that
∣

∣

∣

∣

∣

∣

t+s
∫

t

∫

Ω

Dg ·Dϑn(vn) dxdτ

∣

∣

∣

∣

∣

∣

≤
t+s
∫

t

∫

Ω

ϑ′n(vn)|Dg||Dvn| dxdτ

≤ ‖ϑ′n‖∞‖Dg‖∞s sup
t<τ<t+s

∫

Ωδ

|Dvn(x, τ)| dx ≤ Cδ‖Dg‖∞s ,

owing to estimate (5.27). Clearly Cδ does not depend on n. Therefore
∣

∣

∣

∣

∣

∣

∫

Ω

g(x)[vn(x, t+ s) − vn(x, t)] dx

∣

∣

∣

∣

∣

∣

≤ Cδ

(

‖g‖∞ + ‖Dg‖∞
)

s , (5.29)

for all g ∈ C1
0 (Ωδ). Then, Kruzhkov’s Theorem 2.1 of Appendix B (see also

Remark 2.1 there) implies that
∫

Ωδ

|vn(x, t+ s) − vn(x, t)| dx ≤ Cδ

√
s , 0 < s < δ2 , (5.30)

for all 0 < t < t + s < T , and for all δ > 0. Combining (5.30) with (5.26) we
obtain that the sequence {vn} is pre-compact in L1(Ωδ × (0, T )). By means of
usual diagonal procedures, we may extract a subsequence (still labelled by n)
such that

vn → v , a.e. in QT . (5.31)

It follows

un = ϑn(vn) → ϑ(v) = u , a.e. in QT , (5.32)

where clearly u must equal the weak limit in (5.12).
For any testing function ϕ as in Definition 3.1, we may therefore take the limit
n→ ∞ in (5.16), and obtain (3.7). By construction, v and u satisfy the relevant
regularity requirements. By the same token, ϑ(v) = u, i.e., v ∈ E(u).

5.4. Removing the extra assumption on v0. We have so far proven exis-
tence of solutions under the extra regularity assumption (5.25), which is certainly
satisfied, for example, if the initial data are in C1(Ω). To extend the proof to the
case when v0 is merely assumed to be a bounded function (so that (5.25) does not

necessarily hold), consider first a sequence of smoothed initial data vj
0 ∈ C1(Ω),

such that

vj
0 → v0 , in L1(Ω), ‖vj

0‖∞ ≤ ‖v0‖∞ . (5.33)

Consider the sequence vj of weak solutions, corresponding to these initial data,
to the Stefan problem. These are therefore solutions in the sense of Definition 3.1.
Note that, perhaps extracting a subsequence we may still assume that vj, uj =
ϑ(vj), Duj converge weakly, because estimates (5.10), (5.11) are in force for them,
uniformly on j.
Due to Theorem 4.1, and to (5.33), the sequence vj actually is a Cauchy sequence
in L1(QT ). Again, perhaps extracting a subsequence we may assume that

vj → v , a.e. in QT . (5.34)
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Hence, we may take the limit in the integral equation satisfied by vj , i.e.,
∫∫

QT

{−vjϕt +Duj ·Dϕ}dxdt =

∫

Ω

vj
0(x)ϕ(x, 0) dx+

∫∫

QT

f(vj)ϕdxdt ,

finally proving that v solves the original Stefan problem.

5.5. Exercises.

5.1. Prove in detail that (5.14) follows from (5.11).

5.2. A much simpler proof of existence of weak solutions is available when f does
not depend on v (but, e.g., on u). In this case, indeed it is enough to prove strong
convergence for the sequence un. To obtain the needed compactness estimate,
which actually amounts to a bound of ‖unt‖2 uniform in n, multiply (5.9) by unt,
and use the properties of En. Go over the details of this approach; e.g., prove
that the weak limit v of vn is an admissible enthalpy for the strong limit u of un.

5.3. Assume that (5.25) is replaced by
∫

Ωδ

|v0(x+ h) − v0(x)| dx ≤ Cδω(|h|) ,

for a non decreasing non negative continuous function ω : R → R, ω(0) = 0,
such that ω(s) ≥ s, 0 < s < 1. Prove that the solution v satisfies for |h| < δ < 1,

∫

Ωδ

|v(x+ h, t) − v(x, t)| dx ≤ Cδω(|h|) , a.e. t ∈ (0, T ).

6. A comparison result

Theorem 6.1. Let v1
0, v

2
0 ∈ L∞(Ω), and f1, f2 ∈ C∞(R) satisfy (3.5). Denote

by v1, v2 the corresponding weak solutions to the Stefan problem. If v1
0 ≥ v2

0 in
Ω, and f1 ≥ f2 in R, then v1 ≥ v2 in QT .

Proof. As we already know a result of uniqueness of the solution, we may prove
the statement by approximation. By the same token, we may assume the initial
data are smooth, e.g., in C1(Ω). Let

{vi
n}∞n=1 , i = 1 , 2 ,

be the two sequences constructed in Section 5 as solutions to the problems (5.6)–
(5.8), with v0n [f ] replaced with vi

0n [f i] respectively.
Subtract from each other the PDE solved by v1

n and v2
n, and multiply the resulting

equation by
ϕε = sign+

ε (ϑn(v2
n) − ϑn(v1

n)) ,

where sign+
ε is a smooth approximation of the function sign+(s) = χ(0,+∞)(s),

with sign+′
ε ≥ 0. Integrating by parts over Qt we obtain

∫∫

Qt

[

(v2
nτ − v1

nτ )ϕε + sign+′
ε (u2

n − u1
n)|D(u2

n − u1
n)|2

]

dxdτ

=

∫∫

Qt

[

f2(v2
n) − f1(v1

n)
]

ηnϕε dxdτ .
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On dropping the quadratic term above, and letting ε → 0 we get (recall that
sign+(u2

n − u1
n) = sign+(v2

n − v1
n), see the discussion in Subsection 5.2)

∫

Ω

(v2
n − v1

n)+(x, t) dx ≤
∫∫

Qt

[

f2(v2
n) − f1(v1

n)
]

ηn sign+(v2
n − v1

n) dxdτ .

We have performed an integration in time, and used v1
0n ≥ v2

0n. But, since
f1 ≥ f2,

[f2(v2
n) − f1(v1

n)] sign+(v2
n − v1

n) = [f2(v2
n) − f2(v1

n)] sign+(v2
n − v1

n)

+ [f2(v1
n) − f1(v1

n)] sign+(v2
n − v1

n) ≤ µ(v2
n − v1

n)+ .

Therefore
∫

Ω

(v2
n − v1

n)+(x, t) dx ≤ µ

∫∫

Qt

(v2
n − v1

n)+ dxdτ .

Finally, an application of Gronwall’s lemma concludes the proof. �



APPENDIX A

Maximum principles for parabolic equations

1. The weak maximum principle

Let QT be a bounded open set of R
N+1, contained in R

N × (0, T ), where T > 0.

Definition 1.1. We denote by Q∗
T the parabolic interior of QT , that is the set

of all points (x̄, t̄) with the property

∃ε > 0 : Bε(x̄, t̄) ∩ {t < t̄} ⊂ QT .

Here Bε(x̄, t̄) denotes the (N+1)-dimensional ball with radius ε and center (x̄, t̄).
Define also the parabolic boundary ∂pQT of QT , as

∂pQT = QT −Q∗
T .

The set ∂pQT is the parabolic analogue of the boundary of QT , i.e., roughly
speaking, the region where initial and boundary data should be prescribed for
parabolic problems set in QT (see Figure 1).
For example, if QT = (0, L) × (0, T ) then Q∗

T = (0, L) × (0, T ].

Obviously we have QT ⊂ Q∗
T ⊂ QT . In general ∂pQT is not a closed set.

t

x

A B

C D

E
QT

Figure 1. The dashed lines and the point E belong to the para-
bolic interior, but the points A, B, C, D, as well as the solid lines,
belong to the parabolic boundary.

In the following we denote

Lu = ut − aij(x, t)uxixj
+ bi(x, t)uxi

+ c(x, t)u ,

L0u = ut − aij(x, t)uxixj
+ bi(x, t)uxi

.

39
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Throughout this Appendix we employ the summation convention, and assume
that

u ∈ C2,1(Q∗
T ) ∩ C(QT ) , aij , bi , c ∈ C(Q∗

T ) ;

aij(x, t)ξiξj ≥ ν|ξ|2 , for all ξ ∈ R
N , (x, t) ∈ Q∗

T .

Here ν > 0 is a given constant. We also assume

N
∑

i , j=1

‖aij‖∞ =: A <∞ ,
N

∑

i=1

‖bi‖∞ =: B <∞ , ‖c‖∞ =: C <∞ .

Lemma 1.1. Assume that L0u(x̄, t̄) < 0, where (x̄, t̄) ∈ Q∗
T . Then u can not

attain a local maximum at (x̄, t̄).

Proof. Recalling the definition of Q∗
T , we have, reasoning by contradiction,

L0u(x̄, t̄) = ut(x̄, t̄) − aij(x̄, t̄)uxixj
(x̄, t̄) + bi(x̄, t̄)uxi

(x̄, t̄)

= ut(x̄, t̄) − aij(x̄, t̄)uxixj
(x̄, t̄) .

Note that, if (x̄, t̄) is a point of local maximum, then ut(x̄, t̄) ≥ 0. By the same
token, aijuxixj

≤ 0 at (x̄, t̄), as we show below. This leads of course to an
inconsistency, as L0u(x̄, t̄) < 0 by assumption.
To prove the assertion aijuxixj

≤ 0 at (x̄, t̄), we change spatial coordinates defin-
ing y = x̄+Γ (x− x̄), and v(y, t) = u(x(y), t), where Γ = (γij) is an N×N matrix
such that Γ (aij(x̄, t̄))Γ

t coincides with the diagonal matrix diag (λ1 , . . . , λN ) (we
may assume without loss of generality that (aij) is symmetric). Then

aijuxixj
= aijvyhyk

γhiγkj = λhvyhyh
, at (x̄, t̄).

Note that v(·, t̄) attains a local maximum at y = x̄, so that vyhyh
≤ 0 for all h.

We also take into account that λh > 0 for all h, since (aij) is positive definite.
The result immediately follows. �

Theorem 1.1. (Weak Maximum Principle) Let L0u ≤ 0 in Q∗
T . Then

max
QT

u = sup
∂pQT

u . (1.1)

Proof. Let us define

v = (u−M)e−εt , M = sup
∂pQT

u , ε > 0 .

If u − M is positive at some (x, t) ∈ Q∗
T , then v attains a positive maximum

somewhere in Q∗
T , say at (x̄, t̄). Indeed v ≤ 0 on ∂pQT . We calculate

vt = ute
−εt − εv , vxi

= uxi
e−εt , vxixj

= uxixj
e−εt .

Therefore

L0v(x̄, t̄) = e−εt̄L0u(x̄, t̄) − εv(x̄, t̄) ≤ −εv(x̄, t̄) < 0 .

Upon recalling Lemma 1.1, this inconsistency concludes the proof. �
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1.1. More general operators. Let us consider here more general operators of
the form L.

Theorem 1.2. Let Lu ≤ f in Q∗
T , f ∈ C(QT ). Define

t
∫

0

‖f+(·, τ)‖∞ dτ =: H(t) , 0 < t < T . (1.2)

Then

max
QT

u+ ≤ eC−T
(

sup
∂pQT

u+ +H(T )
)

, (1.3)

where C− = ‖c−‖∞,QT
.

Proof. Define for a constant γ > 0 to be chosen

w(x, t) = e−γtu(x, t) −m−H(t) ,

where

m := sup
∂pQT

u+ .

By definition of m, and since γ > 0, we have w ≤ 0 on ∂pQT . Moreover

L0w = e−γtL0u− γe−γtu− ‖f+(·, t)‖∞
≤ −ce−γtu+ e−γtf+(x, t) − γe−γtu− ‖f+(·, t)‖∞ ≤ −[c+ γ]e−γtu .

Therefore we have L0w < 0 where w > 0 (and hence u > 0 too), provided we
select γ = C− + ε for any arbitrarily fixed ε > 0. Thus, if w attains a positive
maximum in Q∗

T , we arrive at an inconsistency with Lemma 1.1. We conclude

that w ≤ 0 in QT , and we recover (1.3) on letting ε→ 0. �

Note that according to our theorem above, if u ≤ 0 on ∂pQT , and f ≤ 0 in QT ,
then u ≤ 0 in QT , regardless of the sign of c.

Remark 1.1. All the results of this section still hold if the parabolicity constant
ν is equal to 0. This is not the case for the results in next two sections. See also
Section 4.

2. The strong maximum principle

Let (x̄, t̄) ∈ Q∗
T . Define the set S(x̄, t̄) as the set of all (x, t) ∈ QT with the

property

(x, t) can be connected to (x̄, t̄) by a polygonal contained in QT ,
along which t is increasing, when going from (x, t) to (x̄, t̄).

A polygonal is a connected curve made of a finite number of straight line seg-
ments. Essentially, the strong maximum principle asserts that if L0u ≤ 0 in QT ,
and u attains its maximum at a point (x̄, t̄) of Q∗

T , then u is constant in S(x̄, t̄).
Our first result is a weaker version of this principle.
The proof we present here was taken from [2]1. The strong maximum principle
for parabolic equations was first proven in [13].

1The author of [2] quotes a course of D. Aronson (Minneapolis) as source of the proof.
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t

x

(x̄, t̄)

S(x̄, t̄)

QT

Figure 2. The set S(x̄, t̄) as defined in the text.

Lemma 2.1. Let L0v ≤ 0 in PT = Bδ(0) × (0, T ), v ∈ C2,1(P ∗
T ) ∩ C(PT ), where

δ > 0, T > 0 and we assume

v(x, t) ≤M , |x| = δ , 0 < t < T , (2.1)

v(x, 0) < M , |x| ≤ δ , (2.2)

for a given constant M . Then

v(x, T ) < M , |x| < δ . (2.3)

Proof. We have by continuity

v(x, 0) < M − εδ4 , |x| ≤ δ , (2.4)

for a suitable ε > 0, which we fix from now on subject to this constraint.
Let us define, for a α > 0 to be chosen,

w(x, t) = M − ε(δ2 − |x|2)2e−αt − v(x, t) .

Then

L0w(x, t) = −L0[ε(δ
2 − |x|2)2e−αt] −L0v(x, t)

≥ −L0[ε(δ
2 − |x|2)2e−αt] = e−αt

{

εα(δ2 − |x|2)2

− 4ε(δ2 − |x|2)ajj + 8εaijxixj − 4εbixi(δ
2 − |x|2)

}

. (2.5)

Here we employ the summation convention even for the term ajj and we under-
stand the coefficient aij , bi to be calculated at (x, t). We aim at proving that
the quantity {. . . } in last formula above is non negative, for a suitable choice of
α > 0. Introduce a parameter τ ∈ (0, 1), and distinguish the cases:

(i) If |x| ≤ τδ, then

{. . . } ≥ ε(δ2 − |x|2)
[

αδ2(1 − τ2) − 4A− 4Bτδ
]

≥ 0 ,

provided

αδ2(1 − τ2) − 4A− 4Bτδ ≥ 0 . (2.6)
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(ii) If δ > |x| > τδ, then

{. . . } ≥ ε
[

− 4Aδ2(1 − τ2) + 8ν|x|2 − 4Bδ3(1 − τ2)
]

≥ 4ε
[

−Aδ2(1 − τ2) + 2ντ2δ2 −Bδ3(1 − τ2)
]

= 4εδ2
[

2ντ2 −A(1 − τ2) −Bδ(1 − τ2)
]

≥ 0 ,

provided

2ντ2 −A(1 − τ2) −Bδ(1 − τ2) ≥ 0 . (2.7)

We may first select τ so as (2.7) is satisfied, and then choose α so that (2.6) is
satisfied too. Having fixed in this fashion the values of τ and α, we proceed to
observe that

L0w ≥ 0 , in PT .

Moreover on the parabolic boundary of PT we have

w(x, t) = M − v(x, t) ≥ 0 , on |x| = δ;

w(x, 0) = M − ε(δ2 − |x|2)2 − v(x, 0)

≥M − εδ4 − v(x, 0) ≥ 0 , in |x| ≤ δ;

we have made use of (2.4). Therefore w ≥ 0 in PT owing to the weak maximum
principle.
Especially

w(x, T ) = M − ε(δ2 − |x|2)2e−αT − v(x, T ) ≥ 0 ,

and we finally prove our claim, i.e., for |x| < δ,

v(x, T ) ≤M − ε(δ2 − |x|2)2e−αT < M .

�

Theorem 2.1. (Strong Maximum Principle) Let L0u ≤ 0 in Q∗
T . If (x̄, t̄) ∈

Q∗
T , and

max
QT

u = u(x̄, t̄) ,

then

u(x, t) = u(x̄, t̄) , for all (x, t) ∈ S(x̄, t̄). (2.8)

Proof. Let us proceed by contradiction. Assume a point (x1, t1) ∈ S(x̄, t̄) exists
such that u(x1, t1) < u(x̄, t̄) =: M , and consider a polygonal (which must exist
by definition of S(x̄, t̄))

∪n
i=1{(1 − λ)(xi, ti) + λ(xi+1, ti+1) | λ ∈ [0, 1]} ,

where (xn+1, tn+1) = (x̄, t̄), and ti < ti+1, for i = 1, . . .n. We are going to prove
that

u(xi, ti) < M =⇒ u(xi+1, ti+1) < M ,

which obviously leads us to the contradiction

u(x̄, t̄) = u(xn+1, tn+1) < M = u(x̄, t̄) .

We may assume without loss of generality i = 1, i + 1 = 2. Let us switch to
different space coordinates:

ξj = xj − xj
1 − (xj

2 − xj
1)
t− t1
t2 − t1

, j = 1 , . . . , N .
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Thus

(x1, t1) 7→ (0, t1) , (x2, t2) 7→ (0, t2) .

Also define the function

v(ξ, t) = u(x(ξ, t), t) .

In the change to the new variables, the set QT is transformed to an open set
which certainly contains the closure of the cylinder

Eδ = {(ξ, t) | |ξ| < δ , t1 < t < t2 } ,
provided δ > 0 is suitably chosen. Possibly redefining δ we may assume (by
continuity)

v(ξ, t1) < M , |ξ| ≤ δ ,

From now on, let δ be fixed in this way.
We have in Eδ

L̃0v(ξ, t) := vt(ξ, t) − aij(x(ξ, t), t)vξiξj
(ξ, t) + b̃i(ξ, t)vξi

(ξ, t) ≤ 0 . (2.9)

where

b̃i(ξ, t) = bi(x(ξ, t), t) −
xi

2 − xi
1

t2 − t1
.

Note that L̃0 is an operator satisfying the same assumptions as L0. More specif-
ically

n
∑

i=1

‖b̃i‖∞ ≤ B̃ := B +N
|x2 − x1|
(t2 − t1)

.

Finally,

v(ξ, t) ≤M , |ξ| = δ , t1 < t < t2 ,

follows from the definition of M . Therefore we may apply Lemma 2.1 to conclude
that

u(x2, t2) = v(0, t2) < M ,

as claimed. �

2.1. More general operators. Lemma 2.1 and Theorem 2.1 still hold, if L0 in
their statements is replaced with the more general operator L, provided c(x, t)M ≥
0 in QT (here M = u(x̄, t̄) in Theorem 2.1).
We sketch here the changes needed in the proof of the Lemma, the proof of the
Theorem being essentially the same:
The calculation in (2.5) should be replaced with

L̃w(ξ, t) = L̃[M − ε(δ2 − |ξ|2)2e−α(t−t1)] − L̃v(ξ, t)
≥ cM − L̃[ε(δ2 − |ξ|2)2e−α(t−t1)] ≥ −Cε(δ2 − |ξ|2)2e−α(t−t1) + F

= e−α(t−t1)

{

ε(α− C)(δ2 − |ξ|2)2

− 4ε(δ2 − |ξ|2)ajj + 8εaijξiξj −
[

bi −
xi

2 − xi
1

t2 − t1

]

4εξi(δ
2 − |ξ|2)

}

,

where F denotes the the last term in the chain of inequalities in (2.5). Here we
used the fact that cM ≥ 0. It is clear that, additionally assuming e.g., α > 2C,
the proof can be continued as above, taking into account Theorem 1.2.
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3. Hopf’s lemma (the boundary point principle)

Definition 3.1. We say that a point (x̄, t̄) ∈ ∂pQT has the property of the
spherical cap if there exists an open ball Br(x0, t0) such that

(x̄, t̄) ∈ ∂Br(x0, t0) , Br(x0, t0) ∩ {t < t̄} ⊂ QT ,

with x0 6= x̄.

In the following we denote by Cr(x̄, t̄) a cap Br(x0, t0) ∩ {t < t̄} as the one
appearing in Definition 3.1. Note that if (x̄, t̄) has the property of the spherical
cap, then there exist infinitely many such caps.

Remark 3.1. If (x̄, t̄) has the property of the spherical cap, the N -dimensional
open set G := Q∗

T ∩ {t = t̄} has the usual property of the sphere at x̄. Indeed,
it contains the N -dimensional sphere Br(x0, t0)∩{t = t̄}, which however touches
the boundary of G at x̄.
On the other hand, examples can be easily given where (x̄, t̄) ∈ ∂pQT has the
property of the spherical cap, but fails to have the property of the sphere; see
Figures 3 and 4.

t

y

x

Q1
T Q2

Θ

Figure 3. Every point of ∂pQ
1
T ∩ {t > 0} has the spherical cap

property. This fails for the points on the vertical edges of Q2
Θ.

A version of Hopf’s lemma for parabolic equations was first proven in [19], [7].

Theorem 3.1. (Hopf’s lemma) Let L0u ≤ 0 in Q∗
T . Let (x̄, t̄) ∈ ∂pQT have the

property of the spherical cap. If

u(x, t) < u(x̄, t̄) , for all (x, t) ∈ Cr(x̄, t̄), (3.1)

then
∂u

∂e
(x̄, t̄) < 0 , (3.2)
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where e ∈ R
N+1 is any direction such that

(x̄, t̄) + se ∈ Cr(x̄, t̄) , for 0 < s < Σ(e), (3.3)

and we also assume that the derivative in (3.2) exists.

Proof. First, let us invoke the strong maximum principle to prove that the
maximum value u(x̄, t̄) may not be attained in the parabolic interior of Cr(x̄, t̄).
Namely, we obtain in this fashion the additional piece of information that

u(x, t) < u(x̄, t̄) , for all (x, t̄) ∈ Br(x0, t0).

Then, for each fixed e as in (3.3), we may find a spherical cap C ′ such that its
closure C ′ is contained in Cr(x̄, t̄)

∗ ∪ {(x̄, t̄)} and

u(x, t̄) < u(x̄, t̄) , for all (x, t) ∈ C ′, (x, t) 6= (x̄, t̄), (3.4)

(x̄, t̄) + se ∈ C ′ , for 0 < s < Σ′(e). (3.5)

We’ll keep the notation Cr(x̄, t̄) in the following for a cap satisfying (3.4), (3.5).
Let us consider the barrier function

w(x, t) = exp
{

− α(|x− x0|2 + |t− t0|2)
}

− exp{−αr2} ,
where α > 0 is to be chosen, and (x0, t0), r are as in Definition 3.1. Thus
1 > w > 0 in Br(x0, t0), w = 0 on ∂Br(x0, t0), and

wt(x, t) = −2(t− t0)α exp
{

− α(|x− x0|2 + |t− t0|2)
}

,

wxi
(x, t) = −2(xi − xi

0)α exp
{

− α(|x− x0|2 + |t− t0|2)
}

,

wxixj
(x, t) =

(

− 2δijα+ 4(xi − xi
0)(x

j − xj
0)α

2
)

exp{ . . . } .
Therefore we have

L0w(x, t) = 2α exp{ . . . }
[

− (t− t0)+aii −2αaij(x
i−xi

0)(x
j −xj

0)− bi(xi−xi
0)

]

≤ 2α exp{ . . . }
[

(t0 − t) +A− 2αν|x− x0|2 +B|x− x0|
]

. (3.6)

Define
Ω = Cr(x̄, t̄) ∩ {|x− x̄| < ε} ,

where the positive number ε is selected so as, for (x, t) ∈ Ω,

|x− x0| ≥ |x̄− x0| − |x− x̄| ≥ r sin θ − ε ≥ 1

2
r sin θ .

Here θ is the angle between the t axis and the straight line joining (x0, t0), (x̄, t̄).
Note that θ ∈ (0, π/2] as a consequence of x0 6= x̄, according to Definition 3.1;
see also Figure 4. Hence, in Ω we have

L0w(x, t) ≤ 2α exp{ . . . }
[

r +A− 1

2
ανr2 sin2 θ +Br

]

≤ 0 ,

provided we finally choose α so that

2(A+ r +Br)

νr2 sin2 θ
≤ α .

Define for a positive number µ to be chosen presently,

v(x, t) = u(x, t) + µw(x, t) , (x, t) ∈ Ω .

Note that

∂pΩ = S1 ∪ S2 , S1 ⊂ ∂Br(x0, t0) , S2 ⊂ {|x− x̄| = ε} ∩ Cr(x̄, t̄) .
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t

(x̄, t̄)

∂pQT

Cr(x̄, t̄)

|x− x̄| = ε

Ω

θ

(x0, t0)

Figure 4. Ω and Cr(x̄, t̄), in the case t0 > t̄.

Then, on S1 w = 0 and thus

v(x, t) = u(x, t) ≤ u(x̄, t̄) .

On S2, taking into account (3.4),

u(x, t) ≤ u(x̄, t̄) − σ ,

for a suitable σ > 0. It follows that on S2 too

v(x, t) = u(x, t) + µw(x, t) ≤ u(x̄, t̄) − σ + µ ≤ u(x̄, t̄) ,

if we choose µ ≤ σ. Moreover

L0v = L0u+ µL0w ≤ L0u ≤ 0 , in Ω.

The weak maximum principle yields

v(x, t) ≤ u(x̄, t̄) , in Ω.

On the other hand, v(x̄, t̄) = u(x̄, t̄), so that

∂v

∂e
(x̄, t̄) ≤ 0 .

Therefore

∂u

∂e
(x̄, t̄) =

∂v

∂e
(x̄, t̄) − µ

∂w

∂e
(x̄, t̄) ≤ 2µα(x̄− x0, t̄− t0) · e exp{ . . . } < 0 .

�

A typical application of Theorem 3.1 is the following: assume u satisfies L0u = 0
in QT and attains its maximum at a point (x̄, t̄) ∈ ∂pQT , having the spherical
cap property. Unless u is identically constant in a portion of QT , by the strong
maximum principle, u is strictly less than its maximum value in QT . Therefore
we are in a position to apply Hopf’s lemma, and prove ∂u

∂n
> 0, if n is the spatial

outer normal to QT at (x̄, t̄) (as defined in Subsection 2.1 of Chapter 2).
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3.1. More general operators. Theorem 3.1 still holds, if L0 in the statement
is replaced with the more general operator L, provided c(x, t) ≥ 0 in QT , and
u(x̄, t̄) ≥ 0. We sketch here the changes needed in the proof:
The operator L0 is to be replaced everywhere with L.
Estimate (3.6) is substituted with the relation

Lw(x, t) ≤ 2α exp{ . . . }
[ c

2α
−(t−t0)+aii−2αaij(x

i−xi
0)(x

j−xj
0)−bi(xi−xi

0)
]

≤ 2α exp{ . . . }
[

A+
C

2
− 1

2
ανr2 sin2 θ + r +Br

]

≤ 0 ,

which is valid in Ω as above, for a suitable selection of α > 1. The proof is
concluded as above.

3.2. Maximum estimates in problems with boundary conditions involv-
ing the spatial gradient. Assume u solves the problem, to be complemented
with initial and additional boundary data,

L0u = 0 , in G× (0, T ), (3.7)

∂u

∂n
= 0 , on Γ ⊂ ∂G× (0, T ), (3.8)

where G ⊂ R
N , and n denotes the outer spatial normal to ∂G× (0, T ). Then u

can not attain either its maximum or its minimum on Γ , owing to Hopf’s lemma
(unless it is identically constant in some open set).
Assume now (3.8) is replaced with

∂u

∂n
= −h(x, t)u+ k(x, t) , on Γ ⊂ ∂G× (0, T ).

Here h > 0 and k are continuous functions. Assume (x̄, t̄) ∈ Γ is a point of
maximum for u. Then

0 <
∂u

∂n
(x̄, t̄) = −h(x̄, t̄)u(x̄, t̄) + k(x̄, t̄) ,

implying

u(x̄, t̄) <
k(x̄, t̄)

h(x̄, t̄)
.

Note however that a similar, but not necessarily strict, inequality can be proven
trivially without invoking Hopf’s lemma. Analogous estimates hold at points of
minimum.

4. Maximum principle for weak solutions

In this section we proceed formally, with the purpose of exhibiting the ideas
behind a possible extension of the maximum principle to weak solutions of

ut − div a(x, t, u,Du) ≤ 0 , in QT = G× (0, T ), (4.1)

where

a(x, t, u,Du) ·Du ≥ 0 .

Assume that ∂G× (0, T ) = S1 ∪ S2, with

u(x, t) ≤M , on S1,

a(x, t, u,Du) · n ≤ 0 , on S2,
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in a sense suitable for the calculations showed below, and also that

u(x, 0) ≤M , x ∈ G .

Here n is, as above, the outer spatial normal.
Multiply (formally) (4.1) by (u − M)+, and integrate by parts, obtaining, on
dropping the non negative term involving a ·Du,

∫

G

(u(x, t) −M)2+ dx ≤ 2

t
∫

0

∫

∂G

(u−M)+a(x, t, u,Du) · ndσ dτ

+

∫

G

(u(x, 0) −M)2+ dx ,

for all t ∈ (0, T ). The last integral equals 0, because of the assumed bound on
the initial data. The surface integral is non positive: indeed, on S1 we have
(u−M)+ = 0, while on S2 it holds

(u−M)+a(x, t, u,Du) · n ≤ 0 .

Therefore we get
∫

G

(u(x, t) −M)2+ dx ≤ 0 , for all 0 < t < T ,

i.e., u ≤M in G× (0, T ).





APPENDIX B

A theorem by Kruzhkov

We present here a result of [10], which is instrumental in our proof of existence
of weak solutions to the Stefan problem, in the modified version quoted in [8].

1. Mollifying kernels

Let ϕ be a mollifying kernel, i.e.,

ϕ ∈ C∞
0 (R) , suppϕ ⊂ [−1, 1] , ϕ ≥ 0 , ϕ > 0 on [−1/2, 1/2].

Define

ϕε(x) =
1

εN
ϕ
( |x|
ε

)

, x ∈ R
N .

On multiplying, if required, ϕ by a positive constant, we may assume
∫

R
N

ϕε(x) dx =

∫

R
N

ϕ(|x|) dx = 1 , for all ε > 0.

Let v ∈ L1
loc(R

N ). Define for all x ∈ R
N ,

vε(x) =

∫

R
N

v(y)ϕε(x− y) dy =

∫

R
N

v(x− z)ϕε(z) dz . (1.1)

Let Ω be a bounded open set of R
N with a Lipschitz continuous boundary. Define

for 1 > δ > 0

Ωδ = {x ∈ Ω | dist(x, ∂Ω) > δ} .
In the following ωδ will denote a modulus of continuity, that is a continuous, non
decreasing, non negative function ωδ : R → R such that ωδ(0) = 0. The notation
emphasizes the possible dependence of this function on δ.
Our first result is not actually needed in the proof of the main estimate Theo-
rem 2.1, but it was quoted in the proof of Theorem 5.1 of Chapter 2.

Lemma 1.1. Let v ∈ L1(Ω), and assume that for each 0 < δ < 1, h ∈ R
N , |h| < δ

∫

Ωδ

|v(x+ h) − v(x)| dx ≤ ωδ(|h|) . (1.2)

Then, for all 0 < ε < δ, |h| < δ,
∫

Ω2δ

|vε(x+ h) − vε(x)| dx ≤ ωδ(|h|) . (1.3)

Note that, to keep our notation formally coherent with (1.1), we extend in (1.3)
v to v = 0 outside of Ω. However, the integrals defining vε(x+h) and vε(x) there
are actually calculated over Ω (check this).

51
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Proof. By definition of vε,

∫

Ω2δ

|vε(x+ h) − vε(x)| dx =

∫

Ω2δ

∣

∣

∣

∣

∣

∣

∣

∫

R
N

v(y)[ϕε(x+ h− y) − ϕε(x− y)] dy

∣

∣

∣

∣

∣

∣

∣

dx

=

∫

Ω2δ

∣

∣

∣

∣

∣

∣

∣

∫

R
N

ϕε(y)[v(x+ h− y) − v(x− y)] dy

∣

∣

∣

∣

∣

∣

∣

dx

≤
∫

R
N

ϕε(y)

[
∫

Ω2δ

|v(x+ h− y) − v(x− y)| dx
]

dy

=

∫

R
N

ϕε(y)

[
∫

Ω2δ−y

|v(z + h) − v(z)| dz
]

dy .

Here we use the standard notation

G− y = {z | z + y ∈ G} .
Recall that ϕε(y) = 0 if |y| ≥ ε. Therefore in last integral we may assume, as
ε < δ by assumption,

Ω2δ − y ⊂ Ω2δ−ε ⊂ Ωδ .

Hence the last integral above is bounded by
∫

R
N

ϕε(y)ωδ(|h|) dy ≤ ωδ(|h|) .

�

Let us define the sign function

sign(s) =











1 , s > 0 ,

0 , s = 0 ,

−1 , s < 0 .

Clearly, as ε→ 0,

v(x)[sign(v(x))]ε → v(x) sign(v(x)) = |v(x)| , a.e. x ∈ R
N .

Next lemma gives a measure of the speed of convergence in this limiting relation.

Lemma 1.2. In the same assumptions of Lemma 1.1, for all 0 < ε < δ,
∫

Ωδ

||v(x)| − v(x)[sign(v(x))]ε| dx ≤ 2ωδ(ε) . (1.4)

Proof. For all x, y ∈ R
N

||v(x)| − v(x) sign(v(y))| = |[|v(x)| − |v(y)|]− [v(x) − v(y)] sign(v(y))|
≤ 2|v(x) − v(y)| .
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Thus
∫

Ωδ

||v(x)| − v(x)[sign(v(x))]ε| dx

=

∫

Ωδ

∣

∣

∣

∣

∣

∣

∣

∫

R
N

[

|v(x)| − v(x) sign(v(y))
]

ϕε(x− y) dy

∣

∣

∣

∣

∣

∣

∣

dx

≤
∫

Ωδ

∫

R
N

2|v(x) − v(y)|ϕε(x− y) dy dx = 2

∫

R
N

∫

Ωδ

|v(x) − v(x− y)| dxϕε(y) dy .

Since ϕε(y) = 0 for |y| ≥ ε, we may bound above last integral by

2

∫

R
N

∫

Ωδ

|v(x) − v(x− y)| dxϕε(y) dy ≤ 2

∫

R
N

ωδ(|y|)ϕε(y) dy ≤ 2ωδ(ε) .

�

2. The main estimate

Theorem 2.1. Let v ∈ L∞(QT ), and assume that for all 1 > δ > 0, |h| ≤ δ we
have

∫

Ωδ

|v(x+ h, t) − v(x, t)| dx ≤ ωδ(|h|) , a.e. t ∈ (0, T ). (2.1)

Assume moreover that for all g ∈ C1
0(Ωδ), and a given Cδ > 0,

∣

∣

∣

∣

∣

∣

∣

∫

Ωδ

g(x)[v(x, t+ s) − v(x, t)] dx

∣

∣

∣

∣

∣

∣

∣

≤ Cδs
(

‖g‖∞ + ‖Dg‖∞
)

, (2.2)

a.e. 0 < t < t + s < T . Then, we have a.e. 0 < t < t + s < T , and for all
0 < ε < δ,

∫

Ωδ

|v(x, t+ s) − v(x, t)| dx ≤ γδ

(s

ε
+ ε+ ωδ(ε)

)

. (2.3)

Here γδ depends on Ω, Cδ, ‖v‖∞ and N .

Proof. Choose in (2.2)

g(x) = βε(x) =

∫

R
N

β(y)ϕε(x− y) dy ,

where 0 < ε < δ and

β(x) = χΩ2ε+δ
(x) sign(v(x, t+ s) − v(x, t)) .

Note that

|Dg| ≤ γ(N)

ε
;

moreover g(x) = 0 if x ∈ Ωδ −Ωε+δ. Finally,

βε(x) = [sign(v(x, t+ s) − v(x, t))]ε , x ∈ Ω3ε+δ .
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Thus, exploiting assumption (2.2),
∣

∣

∣

∣

∣

∣

∣

∫

Ω3ε+δ

[v(x, t+ s) − v(x, t)]βε(x) dx

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∫

Ωδ

[v(x, t+ s) − v(x, t)]βε(x) dx

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∫

Ωδ−Ω3ε+δ

[v(x, t+ s) − v(x, t)]βε(x) dx

∣

∣

∣

∣

∣

∣

∣

≤ Cδγ(N)
s

ε
+ γ(Ω)‖v‖∞ε .

Therefore
∫

Ωδ

|v(x, t+ s) − v(x, t)| dx ≤
∫

Ω3ε+δ

|v(x, t+ s) − v(x, t)| dx+ γ(Ω)‖v‖∞ε

≤
∫

Ω3ε+δ

||v(x, t+ s) − v(x, t)| − [v(x, t+ s) − v(x, t)]βε(x)| dx+

+

∣

∣

∣

∣

∣

∣

∣

∫

Ω3ε+δ

[v(x, t+ s) − v(x, t)]βε(x) dx

∣

∣

∣

∣

∣

∣

∣

+ γ(Ω)‖v‖∞ε ≤ 4ωδ(ε) + γ
s

ε
+ γε ,

where we used Lemma 1.2. Indeed, it is easily checked, with the help of (2.1)
that

∫

Ωδ

||v(x+ h, t+ s) − v(x+ h, t)| − |v(x, t+ s) − v(x, t)|| dx ≤ 2ωδ(|h|) ,

a.e. 0 < t < t+ s < T , and for δ and h as above.
The proof is concluded. �

Remark 2.1. It is clear that estimate (2.3) implies continuity in t of v in the
L1(Ωδ) norm. In the optimal case when ωδ(|h|) = Cδ|h|, on choosing ε =

√
s (for

s < δ2) we obtain
∫

Ωδ

|v(x, t+ s) − v(x, t)| dx ≤ γ
√
s . (2.4)



APPENDIX C

The spaces Hm+α,m+α

2 (QT )

We define here a class of Banach spaces of standard use in the regularity theory
of parabolic equations (see [11]). Let QT = Ω × (0, T ), where Ω ⊂ R

N is a
bounded open set.
Fix the integer m ≥ 0, and α ∈ (0, 1). In the following we denote with Dr

tD
s
xu,

for r, s ∈ N , any derivative of u, taken r times with respect to the time variable,
and s times with respect to space variables. For a given function u : QT → R we
introduce the quantities

〈u〉(α)
x,QT

= sup
(x,t) ,(x′,t)∈QT

|u(x, t) − u(x′, t)|
|x− x′|α , 〈u〉(m+α)

x,QT
=

∑

2r+s=m

〈Dr
tD

s
xu〉

(α)
x,QT

,

〈u〉(α/2)
t,QT

= sup
(x,t) ,(x,t′)∈QT

|u(x, t) − u(x, t′)|
|t− t′|α/2

,

〈u〉(
m+α

2
)

t,QT
=

∑

2r+s=m−1,m

〈Dr
tD

s
xu〉

( m+α−2r−s
2

)

t,QT
.

The sums above (and below) are extended to all the derivatives Dr
tD

s
xu with r,

s as indicated. If m = 0, the only such function is u itself.
Then we define the norm

|u|(m+α)
QT

=
∑

2r+s≤m

‖Dr
tD

s
xu‖∞,QT

+ 〈u〉(m+α)
x,QT

+ 〈u〉(
m+α

2
)

t,QT
.

The Banach space of the functions u whose norm |u|(m+α)
QT

is finite is denoted by

Hm+α, m+α
2 (QT ) .

1. Comments

The regularity ‘in time’ of u ∈ Hm+α, m+α
2 (QT ) is ‘a half’ of the regularity ‘in

space’, in a sense made precise by the definition itself. To illustrate this point,
assume s ∈ C([0, T ]), and regard s as a function defined over QT . Let us make
explicit the meaning of the statement

s ∈ Hm+α, m+α
2 (QT ) .

If m is even, m = 2k, this is equivalent to: s ∈ Ck([0, T ]), and

sup
0<t,t′<T

|s(k)(t) − s(k)(t′)|
|t− t′|α

2

<∞ .

If instead m is odd, m = 2k − 1, we have: s ∈ Ck−1([0, T ]), and

sup
0<t,t′<T

|s(k−1)(t) − s(k−1)(t′)|
|t− t′| 1+α

2

<∞ .
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Clearly, for all m ≥ 0,

ṡ ∈ Hm+α, m+α
2 (QT ) =⇒ s ∈ H2+m+α, 2+m+α

2 (QT ) . (1.1)



APPENDIX D

Symbols used in text

‖f‖p,D norm of f in Lp(D), 1 ≤ p ≤ ∞; often the indication of the domain
is omitted, when superfluous.

Ω(t) the set {(x, t) | x ∈ Ω}.
|Ω| the Lebesgue measure of the set Ω.
dist(A,B) standard Euclidean distance between A and B.
Br(x) ball with center x and radius r.
x→ s0+ x goes to s0 from the right.
x→ s0− x goes to s0 from the left.
f(s0+) denotes the limit of f(x) as x→ s0+.
f(s0−) denotes the limit of f(x) as x→ s0−.
s+ positive part of s ∈ R, s+ = max(s, 0).
s− negative part of s ∈ R, s− = max(−s, 0).
δij Kronecker’s symbol: δij = 1 if i = j, δij = 0 if i 6= j.

Df spatial gradient of the function f(x, t): Df = ( ∂f
∂x1

, . . . , ∂f
∂xN

).

ek k-th unit vector of the standard basis in R
N .

C(A) class of continuous functions in A. The same as C0(A).
Cn(A) class of functions, continuous in A together with

their derivatives up to order n.
Cn

0 (A) class of the functions in Cn(A), whose support is
compact and contained in A.

C2,1(A) class of functions f , such that f , ∂f
∂t , ∂f

∂xi
, and ∂2f

∂xi∂xj

are continuous in A for all i, j = 1, . . . , N .
W 2

1 (G) Sobolev space of functions in L2(G) whose first derivatives are in L2(G).
W 2

2,1(G) Sobolev space of functions f ∈W 2
1 (G) whose spatial derivatives

∂2f
∂xi∂xj

are in L2(G) for all i, j = 1, . . . , N .

PDE Partial Differential Equation/Equations.
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[17] J. Stefan. Über die Theorie der Eisbildung. Monatshefte Mat. Phys., 1:1–6, 1890.
[18] D. Tarzia. A bibliography on moving-free boundary problems for the heat-diffusion equa-

tion. The Stefan and related problems. MAT-Serie A, 2, 2000.
http://www.austral.edu.ar/web/investigacion/2(2000).htm.

[19] R. Viborni. On properties of solutions of some boundary value problems for equations of
parabolic type. Doklady Akad. Nauk SSSR (n.s.), 117:563–565, 1957. (In Russian).

[20] A. Visintin. Models of Phase Transition, volume 28 of Progress in Nonlinear Differential
Equations and Their Applications. Birkha user, Boston, MA U.S.A., 1996.

59


